• 제목/요약/키워드: Circular hole

검색결과 296건 처리시간 0.027초

연소기 내벽의 전면 막냉각 사용시 효율 증대에 관한 연구 (Experimental study to enhance cooling effects on total-coverage combustor wall)

  • 조형희
    • 대한기계학회논문집B
    • /
    • 제21권1호
    • /
    • pp.165-173
    • /
    • 1997
  • The present study investigates heat/mass transfer for flow through perforated plates for application to combustor wall and turbine blade film cooling. The experiments are conducted for hole length to diameter ratios of 0.68 to 1.5, for hole pitch-to-diameter ratios of 1.5 and 3.0, for gap distance between two parallel perforated plates of 1 to 3 hole diameters, and for Reynolds numbers of 60 to 13, 700. Local heat/mass transfer coefficients near and inside the cooling holes are obtained using a naphthalene sublimation technique. Detailed knowledge of the local transfer coefficients is essential to analyze thermal stress in turbine components. The results indicate that the heat/mass transfer coefficients inside the hole surface vary significantly due to flow separation and reattachment. The transfer coefficient near the reattachment point is about four and half times that for a fully developed circular tube flow. The heat/mass transfer coefficient on the leeward surface has the same order as that on the windward surface because of a strong recirculation flow between neighboring jets from the array of holes. For flow through two perforated plate layers, the transfer coefficients on the target surface (windward surface of the second wall) affected by the gap spacing are approximately three to four times higher than that with a single layer.

단이 진 인장부재 필릿과 구멍사이 응력집중에 관한 광탄성법 해석 (Analysis of Stress Concentration between Fillet and Hole in a Stepped Plate under Tensile Load by Photoelasticity)

  • 백태현;김명수;김영철
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제5권2호
    • /
    • pp.207-214
    • /
    • 2015
  • 기계구조물 부재의 단면에 구멍이 있거나 단면이 갑자기 변화하는 경우, 응력집중이 발생되며 대부분 재료의 파손에 매우 중요한 원인이 된다. 단면의 급격한 변화로 집중하중이 작용되는 지점 근방에서의 응력은 부재의 평균응력보다 훨씬 크게 작용하기 때문이다. 본 논문에서는 인장하중을 받는 단이 진 판재 모서리의 필릿과 구멍사이의 응력집중에 대해 살펴보았다. 응력 집중의 상호 작용 효과에 대해서 광탄성실험법과 상용 유한요소 소프트웨어 ANSYS로 해석하였다. 해석 결과로부터, 필렛 반경에서 서로 다른 위치에 있는 구멍은 상호 간섭작용으로 상이한 응력집중계수 값들을 일으킬 수 있다.

초음속 노즐 내 2차 분사 slot 개수에 따른 유동 특성 변화 (Effect of Secondary Flow Injection on Flow Charncteristics in 3-Dimensional Supersonic Nozzle)

  • 송지운;이종주;조형희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3529-3533
    • /
    • 2007
  • The advantages of the SITVC(secondary injection thrust vector control) technique over mechanical thrust vector systems include a reduction in both the nozzle weight and complexity due to the elimination of the mechanical actuators that are used in conventional vectoring. Computational study is performed to understand the fluidic thrust vectoring control of an axisymmetric nozzle, in which secondary gas injection is made in the divergent section of the nozzle. The nozzle has a design mach number 3. The effect of injection hole number and shape of secondary jet on the mach number distribution of SITVC were investigated. The standard ${\kappa}$ - ${\epsilon}$ turbulence model solved the complex three-dimensional nozzle flows perturbed by the secondary gas jet. The numerical code was validated by experiment. The results showed that the mach number distribution of circular and square nozzle are similar each other. As number of second injection hole increasing, a effect of deflection was decreased.

  • PDF

The buckling of rectangular plates with opening using a polynomial method

  • Muhammad, T.;Singh, A.V.
    • Structural Engineering and Mechanics
    • /
    • 제21권2호
    • /
    • pp.151-168
    • /
    • 2005
  • In this paper an energy method is presented for the linear buckling analysis of first order shear deformable plates. The displacement fields are defined in terms of the shape functions, which correspond to a set of predefined points and are composed of significantly high order polynomials. The locations of these points are found by mapping the geometry using the naturalized coordinates and bilinear shape functions. In order to evaluate the method, fully clamped and simply supported rectangular plates subjected to uniform uniaxial compressive loading on two opposite edges of the plate are investigated thoroughly and the results are compared with the exact solution given in the monograph of Timoshenko and Gere (1961). The method is extended to the analysis of perforated plates, wherein the negative stiffness computed over the opening area from in-plane and out-of-plane deformation modes is superimposed to the stiffness of the full plate. Numerical results are then favorably compared with those obtained by finite element methods. Other cases such as; rectangular plates with eccentrically located openings of different shapes are studied and reported in this paper with regards to the effect of aspect ratio, hole size, and hole position on the buckling. For a square plate with a large circular opening at the center, diameter being 80 percent of the length, the present method yields buckling coefficient 12.5 percent higher than the one from the FEM.

Aluminum and E-glass epoxy plates behavior subjected to shock loading

  • Muhit, Imrose B.;Sakib, Mostofa N.;Ahmed, Sheikh S.
    • Advances in materials Research
    • /
    • 제6권2호
    • /
    • pp.155-168
    • /
    • 2017
  • The terrorist attacks and dangers by bomb blast have turned into an emerging issue throughout the world and the protection of the people and structures against terrorist acts depends on the prediction of the response of structures under blast and shock load. In this paper, behavior of aluminum and unidirectionally reinforced E-Glass Epoxy composite plates with and without focal circular holes subjected to shock loading has been identified. For isotropic and orthotropic plates (with and without holes) the classical normal mode approach has been utilized as a part of the processing of theoretical results. To obtain the accurate results, convergence of the results was considered and a number of modes were selected for plate with and without hole individually. Using a shock tube as a loading device, tests have been conducted to composite plates to verify the theoretical results. Moreover, peak dynamic strains, investigated by experiments are also compared with the theoretical values and deviation of the results are discussed accordingly. The strain-time histories are likewise indicated for a specific gauge area for aluminum and composite plates. Comparison of dynamic-amplification factors between the isotropic and the orthotropic plates with and without hole has been discussed.

유출홀이 설치된 배열 충돌제트의 유동 및 열전달 특성 (Flow and Heat/Mass Transfer Characteristics of Arrays of Impingement Jets with Effusion Holes)

  • 이동호;윤필현;조형희
    • 대한기계학회논문집B
    • /
    • 제25권11호
    • /
    • pp.1606-1615
    • /
    • 2001
  • The present study has been conducted to investigate heat/mass transfer characteristics on a target plate fur arrays of circular impingement jets with and without effusion holes. A naphthalene sublimation method is employed to determine local heat/mass transfer coefficients on the target plate. The effusion holes are located at the center of four injection holes in the injection plate where the spent air is discharged through the effusion hole after impingement on the target plate. For the array jet impingement without effusion holes, the array jets are injected into the crossflow formed by upstream spent air because the impinged jets must flow to the open exit. For small gap distances, heat/mass transfer coefficients without effusion holes are very non-uniform due to crossflow effects and re-entrainments of spent air. However, uniform distributions and enhanced values of heat/mass transfer coefficients are obtained by installing the effusion holes. For large gap distances, the crossflow has little influence on heat/mass transfer characteristics on the target palate due to the large cross-sectional open area between the injection and target plates. Therefore, the distributions and levels of heat/mass transfer coefficients are almost the same for both cases.

Analytic Formulation of Transmission Light Intensity of Hole Blockers in Intensity-based Polymer Optical Fiber Sensors

  • Kwon, Il-Bum;Kim, Chi-Yeop;Shim, Chan-Wook;Hwang, Du-Sun;Chung, Yung-Joo
    • 센서학회지
    • /
    • 제20권4호
    • /
    • pp.221-225
    • /
    • 2011
  • Intensity-based optical fiber sensors are devised using a blocker which is located between two polymer optical fibers(POFs), one fiber is light-in and the other is light-out. This blocker is moved by an external displacement. Therefore, finding a general formulation of the relation between this displacement and transmission light intensity of various blockers is important to help develop intensity-based optical fiber sensors. In this paper, we consider blockers with arbitrary shapes from circular holes to inclined angled blockers. The transmission light intensities of such blockers should be determined by this generalized equation. In order to verify this equation, the calculated intensities of the blockers are compared with the values acquired from experiment. In the comparison, it is shown that the analytic equation can give the exact values of the transmitted light intensities for the assorted blockers. The range of the displacement measurement is also shown to be about 6 times of the radius of the hole in the case of a 9 degree inclined angle blocker.

유한요소해석을 이용한 LED 프레임의 열전달 특성에 관한 연구 (Study on Heat Dissipation Characteristics of LED Frames Using Finite Elements Method)

  • 손인수;강성중;전범식;안성진
    • 한국산업융합학회 논문집
    • /
    • 제23권6_2호
    • /
    • pp.935-941
    • /
    • 2020
  • In this study, the effect of different shapes on the heat dissipation characteristics of other porous frames on LED lighting frames was studied using finite element analysis. In addition, the heat transfer characteristics of LED frames were tested using a thermal imaging camera and the results of finite element analysis were compared to derive the optimal hole shape. According to the study, the heat dissipation effect was better for frames with hole compared to existing ones without holes. In particular, the heat dissipation characteristics test showed that for frames with holes, the rise time to the maximum temperature is fast and the maximum temperature is significantly lower. Also, we could see that the square and diamond shapes were smaller than the circular pores, but had a greater heat dissipation effect. Through this study, we have concluded that there is a limit to increasing the heat dissipation effect of the frame with a perforated shape, and it is necessary to conduct further research on the change in the shape of the frame in order to achieve a better heat dissipation effect in the future.

원형 다공 평판의 면내 유효 물성치 계산 (Evaluation of In-Plane Effective Properties of Circular-Hole Perforated Sheet)

  • 정일섭
    • 한국정밀공학회지
    • /
    • 제21권1호
    • /
    • pp.181-188
    • /
    • 2004
  • Structural analysis for materials containing regularly spaced in-homogeneities is usually executed by using averaged material properties. For the homogenization process, a unit cell is defined and loaded somehow, and its response is investigated to evaluate the properties. The imposed loading conditions should accord to the behavior of unit cell immersed in the macroscopic structure in order to guarantee the accuracy of the effective properties. Each unit cell shows periodic variation of strain if the material is loaded uniformly, and in this study, direct implementation of this characteristic behavior is attempted on FE models of unit cell. Conventional finite element analysis tool can be used without any modification, and the boundary of unit cell is constrained in a way that the periodicity is satisfied. The proposed method is applicable to skew arrayed in-homogeneity problems. The flexibility matrix relating tonsorial stress and strain components in skewed rectilinear coordinate system is transformed so that the required engineering constants can be evaluated. Effective properties are computed for the materials with square and skew arrayed circular holes, and its accuracy is examined.

등방 및 이방성 암반내 공동의 열역학적 거동에 관한 전산모델연구 (A Study on the Thermo-mechanical Behavior of Underground Openings in lsotropic and Structurally Snisotropic Rock Masses)

  • 문현구;주광수
    • 터널과지하공간
    • /
    • 제1권2호
    • /
    • pp.181-203
    • /
    • 1991
  • The effects of geologic structures such as rock joins and bedding planes on the thermal conductivity of a discontinuous rock mass are studied. The expressions for the equivalent thermal conductivities of jointed rock masses are derived and found to be anisotropic. The degree of anisotropy depends primarily on the thermal properties contrast between the joint phase and surrounding intact rock, the joint density expressed as volume fraction and the inclination angle of the joint. Within the context of 2-dimensional finite element heat transfer scheme, the isotherms around a circular hole are analyzed for both the isotropic and anisotropic rock masses in 3 different thermal boundary conditions. i.e. temperature, heat flux and convection boundary conditions. The temperature in the stratified anisotripic rock mass is greatly influenced by the thermal properties of the rock formation in contact with the heat source. Using the excavation-temperature coupled elastic plastic finite element method, analyzed is the thermo-mechanical stability of a circular opening subjected to 10$0^{\circ}C$ at a depth of 527m. It is found that the thermal stress concentration was enough to deteriorate the stability and form a plastic yield zone around the opening, in contrast to the safety factor greater than 2 resulted form the excavation-only analysis.

  • PDF