• Title/Summary/Keyword: Circular beam model

Search Result 68, Processing Time 0.022 seconds

Fabrication of Master for a Spiral Pattern in the Order of 50nm (50nm급 불연속 나선형 패턴의 마스터 제작)

  • Oh, Seung-Hun;Choi, Doo-Sun;Je, Tae-Jin;Jeong, Myung-Yung;Yoo, Yeong-Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.134-139
    • /
    • 2008
  • A spirally arrayed nano-pattern is designed as a model pattern for the next generation optical storage media. The pattern consists off types of embossed rectangular dot, which are 50nm, 100nm, 150nm and 200nm in length and 50nm in width. The height of the dot is designed to be 50nm. The pitch of the spiral track of the pattern is 100nm. A ER(Electron resist) master for this pattern is fabricated by e-beam lithography process. The ER is first spin-coated to be 50nm thick on a Si wafer and then the model pattern is written on the coated ER layer by e-beam. After developing this pattern written wafer in the solution, a ER pattern master is fabricated. The most conventional e-beam machine can write patterns in orthogonal way, so we made our own pattern generator which can write the pattern in circular or spiral way. This program generates the patterns to be compatible with the e-beam machine from Raith(Raith 150). To fabricate 50nm pattern master precisely, a series of experiments were done including the design compensation for the pattern size, optimization of the dose, acceleration voltage, aperture size and developing. Through these experiments, we conclude that the higher accelerating voltages and smaller aperture size are better for mastering the nano pattern which is in order of 50nm. With the optimized e-beam lithography process, a spiral arrayed 50nm pattern master adopting PMMA resist was fabricated to have dimensional accuracy over 95% compared to the designed. Using this pattern master, a metal pattern stamp will be fabricated by Ni electro plating for injection molding of the patterned plastic substrate.

Free vibration analysis of tapered FRP transmission poles with flexible joint by finite element method

  • Saboori, Behnam;Khalili, Seyed Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.42 no.3
    • /
    • pp.409-424
    • /
    • 2012
  • Since relatively low elasticity modulus of the FRP materials results in lower natural frequencies, it is necessary to study the free vibration of FRP transmission poles. In this paper, the free vibration of tapered FRP transmission poles with thin-walled circular cross-section is investigated by a tapered beam element. To model the flexible joints of the modular poles, a rotational spring model is used. Modal analysis is performed for typical FRP poles with/without joint and they are also modeled by ANSYS commercial finite element software. There is a good correlation between the results of the tapered beam finite element model and those obtained from ANSYS as well as the existing experimental results. The effects of different geometries, material lay-ups, concentrated masses at the pole tip, and joint flexibilities are evaluated. Moreover, it is concluded that using tougher fibres at the inner and outer layers of the cross-section, results in higher natural frequencies, significantly.

Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach

  • Eltaher, Mohamed A.;Almalki, Talaal A.;Ahmed, Khaled I.E.;Almitani, Khalid H.
    • Advances in nano research
    • /
    • v.7 no.1
    • /
    • pp.39-49
    • /
    • 2019
  • This paper focuses on two main objectives. The first one is to exploit an energy equivalent model and finite element method to evaluate the equivalent Young's modulus of single walled carbon nanotubes (SWCNTs) at any orientation angle by using tensile test. The calculated Young's modulus is validated with published experimental results. The second target is to exploit the finite element simulation to investigate mechanical buckling and natural frequencies of SWCNTs. Energy equivalent model is presented to describe the atomic bonding interactions and their chemical energy with mechanical structural energies. A Program of Nanotube modeler is used to generate a geometry of SWCNTs structure by defining its chirality angle, overall length of nanotube and bond length between two adjacent nodes. SWCNTs are simulated as a frame like structure; the bonds between each two neighboring atoms are treated as isotropic beam members with a uniform circular cross section. Carbon bonds is simulated as a beam and the atoms as nodes. A finite element model using 3D beam elements is built under the environment of ANSYS MAPDL environment to simulate a tensile test and characterize equivalent Young's modulus of whole CNT structure. Numerical results are presented to show critical buckling loads, axial and transverse natural frequencies of SWCNTs with different orientation angles and lengths. The understanding of mechanical behaviors of CNTs are essential in developing such structures due to their great potential in wide range of engineering applications.

Free Vibration Analysis of Horizontally Curved Beams with Variable Cross Sectional Width on Elastic Foundation (탄성지반 위에 놓인 단면폭이 변화하는 수평 곡선보의 자유진동 해석)

  • 이병구;박광규;오상진;이태은
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.29-36
    • /
    • 2003
  • This paper deals with the free vibration analysis of horizontally circular mea beams with variable cross sectional width on elastic foundations. Taking into account the effects of rotatory inertia and shear deformation differential equations governing the free vibrations of such beams are derived, in which the Whlkler foundation model is considered as the elastic foundation. The variable width of beam is chosen as the linear equation. The differential equations are solved numerically to calculate natural frequencies. In numerical examples, the curved beam with the hinged-hinged, hinged-clamped, clamped-hinged and damped-clamped end constraints are considered The parametric studies are conducted and the lowest four frequency parameters are reported in figures as the non-dimensional forms.

  • PDF

The development of a back analysis program for subsea tunnel stability under operation: transversal tunnel section (운영 중 해저 터널의 안정성 평가를 위한 역해석 프로그램 개발: 횡단방향)

  • An, Joon-Sang;Kim, Byung-Chan;Lee, Sang-Hyun;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.195-212
    • /
    • 2017
  • When back analysis is used for the assessment of an operating subsea tunnel safety in various measurement information such as stress, water pressure and tunnel lining and ground stiffness degradation, the reliable results within tolerable error rate can be obtained. By utilizing a commercial geotechnical analysis program FLAC3D, back analysis can be performed with a DEA which has already been successfully validated in previous studies. However, relative more time-consumption is the drawback of this approach. For this reason, this study introduced beam-spring model-based on FEM solver which uses less analysis time relatively. Beam-spring program capable of structural analysis of a circular tunnel section was developed by using Python language and combined with the built-DEA. From the measurement datum, expected to estimate the stability of an operation tunnel close to real-time.

Crankshaft Stiffness Matrix Construction for the Vibration Analysis Coupled with Torsional and Axial Directions of a Marine Engine Shaft System (박용엔진 축계 비틀림/종 연성진동 해석을 위한 크랭크 축 강성행렬 구축)

  • Kim, Won-Jin;Jeon, Min-Kyu;Jeong, Dong-Gwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.55-61
    • /
    • 1999
  • The torsional and axial vibrations of shaft system have been calculated independently because of both the limitation of computing time and the complexity of crankshaft model. In actual system, however, the torsional and axial vibrations are coupled. Therefore, in recent, many works in the coupled vibration analysis have been done to find out the more exact dynamic behavior of shaft system. The crankshaft model is very important in the vibration analysis of shaft system because most of excitation forces act on the crankshaft. It is, however, difficult to establish an exact model of crankshaft since its shape is very complex. In this work, an efficient method is proposed to construct the stiffness matrix of crankshaft using a finite element model of half crankthrow. The proposed and existing methods are compared by applying to both a simple thick beam with circular cross section and an actual crankshaft.

  • PDF

Influence of opening location, shape, and size on the behavior of steel beam columns

  • Mona M. Fawzy;Fattouh M. F. Shaker;Alia M. Ayyash;Mohamed M. Salem
    • Steel and Composite Structures
    • /
    • v.50 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • The objective of this research is to study experimentally and numerically the behavior of steel beam columns with openings. Although the presence of openings in the beam columns is inevitable, finding ways to maintain strength is crucial. The studied parameters are opening shape, the ratio between opening height to specimen height, the percentage of opening location from support to beam column length, and web slenderness. Experimental tests are conducted including twelve specimens to study the effect of these parameters and record failure load, load deflection curve, and stress strain curve. Two failure modes are observed: local and flexural buckling. Interaction curves plotted from finite element model analysis are also used to expand the parametric study. Changing the location of the opening can decrease failure load by up to 7% and 60% in both normal and moment ratios respectively. Increasing the opening dimension can lead to a drop in the axial ratio by up to 29% and in the moment ratio by up to 74%. The weakest beam column behavior is noticed in specimens with rectangular openings which results from uneven and concentrated stresses around the opening. The main results of this research illustrate that the best location for opening is at 40% - 50% from beam column support. Also, it is advisable to use circular openings instead of rectangular openings in specimens having slender webs because moment ratios are raised by 85% accompanied by a rise in normal ratios by 9%.

Thermal Stability Analysis of a Flexible Beam Spacecraft Appendage (위성체 유연 보 구조물의 열 안정성 해석)

  • 윤일성;송오섭
    • Composites Research
    • /
    • v.15 no.3
    • /
    • pp.18-29
    • /
    • 2002
  • The bending vibration and thermal flutter instability of spacecraft booms modeled as circular thin-walled beams of closed cross-section and subjected to thermal radiation loading is investigated in this paper. The thin-walled beam model incorporates a number of nonclassical effects of transverse shear, primary and secondary warping, rotary inertia and anisotropy of constituent materials. Thermally induced vibration response characteristics of a composite thin walled beam exhibiting the circumferantially uniform system(CUS) configuration are exploited in connection with the structural flapwise bending-lagwise bending coupling resulting from directional properties of fiber reinforced composite materials and from ply stacking sequence. The numerical simulations display deflection time-history as a function of the ply-angle of fibers of the composite materials, damping factor, incident angle of solar heat flux, as well as the boundary of the thermal flutter instability domain. The adaptive control are provided by a system of piezoelectric devices whose sensing and actuating functions are combined and that are bonded or embedded into the host structure.

Positional Uncertainty Reduction of Overlapped Ultrasonic Sensor Ring for Efficient Mobile Robot Obstacle Detection (효율적인 이동로봇의 장애물 탐지를 위한 중첩 초음파 센서 링의 위치 불확실성 감소)

  • Kim, Sung-Bok;Lee, Sang-Hyup
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.3
    • /
    • pp.198-206
    • /
    • 2009
  • This paper presents the reduction of the positional uncertainty of an ultrasonic sensor ring with overlapped beam pattern for the efficient obstacle detection of a mobile robot. Basically, it is assumed that a relatively small number of inexpensive low directivity ultrasonic sensors are installed at regular spacings along the side of a circular mobile robot with their beams overlapped. First, for both single and double obstacles, we show that the positional uncertainty inherent to an ultrasonic sensor can be reduced using the overlapped beam pattern, and also quantify the relative improvement in positional uncertainty. Second, given measured distance data from one or two ultrasonic sensors, we devise the geometric method to determine the position of an obstacle with respect to the center of a mobile robot. Third, we examine and compare existing ultrasonic sensor models, including Gaussian distribution, parabolic distribution, uniform distribution, and impulse, and then build the sensor model of overlapped ultrasonic sensors, adequate for obstacle detection in terms of positional uncertainty and computational requirement. Finally, through experiments using our prototype ultrasonic sensor ring, the validity of overlapped beam pattern for reduced positional uncertainty and efficient obstacle detection is demonstrated.

  • PDF

Computation of stress-deformation of deep beam with openings using finite element method

  • Senthil, K.;Gupta, A.;Singh, S.P.
    • Advances in concrete construction
    • /
    • v.6 no.3
    • /
    • pp.245-268
    • /
    • 2018
  • The numerical investigations have been carried out on deep beam with opening subjected to static monotonic loading to demonstrate the accuracy and effectiveness of the finite element based numerical models. The simulations were carried out through finite element program ABAQUS/CAE and the results thus obtained were validated with the experiments available in literature. Six simply supported beams were modelled with two square openings of 200 and 250 mm sides considered as opening at centre, top and bottom of the beam. In order to define the material behaviour of concrete and reinforcing steel bar the Concrete Damaged Plasticity model and Johnson-Cook material parameters available in literature were employed. The numerical results were compared with the experiments in terms of ultimate failure load, displacement and von-Mises stresses. In addition to that, seventeen beams were simulated under static loading for studying the effect of opening location, size and shape of the opening and depth, span and shear span to depth ratio of the deep beam. In general, the numerical results accurately predicted the pattern of deformation and displacement and found in good agreement with the experiments. It was concluded that the structural response of deep beam was primarily dependent on the degree of interruption of the natural load path. An increase in opening size from 200 to 250 mm size resulted in an average shear strength reduction of 35%. The deep beams having circular openings undergo lesser deflection and thus they are preferable than square openings. An increase in depth from 500 mm to 550 mm resulted in 78% reduced deflection.