• Title/Summary/Keyword: Circular Plate

Search Result 647, Processing Time 0.037 seconds

A Study on the Design of Special Circular Plate Anchorage for Post-tension (원형 정착판을 사용한 포스트텐션 특수정착구의 설계에 관한 연구)

  • Choi, Kyu-Hyung;Lho, Byeong-Cheol;Lim, Jung-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.73-83
    • /
    • 2016
  • Bearing stress near anchor plates is usually very high due to prestressing force in anchorage zone of concrete structure used post-tensioned prestressed method. In order to effective utilization of cross section and crack control, appropriate size of anchorage plates should be used to prevent crack initiation and failure of concrete structures eventually. This study aims to suggest equation for effective area of bearing plate of rectangle type and circular type by Highway Bridge Design Specification and PTI etc. A shape factor according to bearing plate shape is suggested based on numerical analysis, and it can be used suitability for design of special anchorage plate dimension.

Design equation to evaluate bursting forces at the end zone of post-tensioned members

  • Kim, Joung Rae;Kwak, Hyo-Gyoung;Kim, Byung-Suk
    • Computers and Concrete
    • /
    • v.24 no.5
    • /
    • pp.423-436
    • /
    • 2019
  • Design equations to evaluate the bursting force in a post-tensioned anchorage zone have been introduced in many design codes, and one equation in AASHTO LRFD is widely used. However, this equation may not determine the bursting force exactly because it was designed on the basis of two-dimensional numerical analyses without considering various design parameters such as the duct hole and shape of the bearing plate. To improve the design equation, modification of the AASHTO LRFD design equation was considered. The behavior of the anchorage zone was investigated using three-dimensional linear elastic finite element analysis with design parameters such as bearing plate size and diameter of sheath hole. Upon the suggestion of a modified design equation for evaluating the bursting force in an anchorage block with a rectangular anchorage plate (Kim and Kwak 2018), additional influences of design parameters that could affect the evaluation of bursting force were investigated. An improved equation was introduced for determining the bursting force in an anchorage block with a circular anchorage plate, using the same procedure introduced in the design equation for an anchorage block with a rectangular anchorage plate. The validity of the introduced design equation was confirmed by comparison with AASHTO LRFD.

Miniaturization of Microstrip Antenna Using 'L' Shaped Plate ('L'자형 Plate를 이용한 마이크로스트립 안테나의 소형화)

  • Jang Yon-Jeong;Woo Jong-Myung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.5 s.96
    • /
    • pp.501-510
    • /
    • 2005
  • In this paper, the miniaturized linear and circular polarization microstrip antennas are designed and fabricated at the resonant frequency of 1.575 GHz. To miniaturize the microstrip patch antenna(MPA), the 'L' type plates are attached under the rectangular microstrip patch. In case of the linear polarization, the size of the microstrip antenna attached the 14 plates is reduced to $67.9\%(47mm{\times}47mm)$ compared with general $MPA(83mm{\times}83mm)$. The return loss and -10 dB bandwidth are -34.4 dB and 49 $MHz(3.1\%)$. And the radiation pattern is broad through the size reduction of the patch. Also in case of the circular polarization, the size of the microstrip antenna with 13 plates is reduced to $54.6\%(53mm{\times}54mm)$ compared with the general $MPA(76mm{\times}83mm)$. The axial ratio is 1.37dB at 1.575 GHz, the 2 dB axial ratio bandwidth is 14 $MHz(0.8\%)$. As that result, we could confirm that 3-dimensional structure with attached 'L' shaped plate is proper form for the miniaturization of linear and circular polarization microstrip antenna.

Boundary Element Analysis of Plate with Crack Approaching Circular Holes (원공(圓孔)에 접근(接近)하는 균열(龜裂)이 있는 판(板)이 경계요소해석(境界要素解析))

  • Yang, Chang Hyun;Kim, Il Kon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.103-110
    • /
    • 1987
  • When a crack in the plate with a circular hole approaches to the hole, the large stress concentration phenomenon appears at the boundary of the circular hole and the crack tip. As a numerical analysis method for the stress concentration in a structure, the Finite Element Method has been used. In this paper, however, the Boundary Element Method is employed, which may reduce the numbers of input data and the calculating time when compared with the Finite Element Method. A finite flat plate having a crack between the two circular holes is chosen as a model in this study. The results by the Boundary Element Method are compared with those of the Boundary collocation Method by Newman, which are already well established. And the structural behavior near the circular hole and at the crack tip is also investigated.

  • PDF

Flow and Temperature Characteristics in a Circular Impinging Jet (원형 충돌 제트에서의 유동 및 온도 특성)

  • Kim Jungwoo;Choi Haecheon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.237-240
    • /
    • 2002
  • In the present study, we perform LES of turbulent flow and temperature fields in a circular impinging jet at Re=5000 for two cases of H/D=2 and 6 (H denotes the distance between the jet exit and flat plate, and D does the diameter of the jet exit). In the case of H/D=2, the regular vortical structures observed in free jet do not exist because of the smaller distance than the potential core. The Nusselt number on the wall is largest at $r/D{\cong}10.67$ where vortex rings Impinge. At $r/D{\cong}1.5{\~}2.0$, the vortex rings induce the secondary vortices, resulting in a secondary peak in the Nusselt number there. In the case of H/D=6, the vortex rings change into three-dimensional vortical structures and the small-scale vortices impinge on the flat plate. The increase of turbulent intensity due to small-scale vortices results in the largest Nusselt number at the stagnation point.

  • PDF

Instability Characteristics of Circular Jets Producing Hole-Tones (Hole-Tone의 발생과 원형제트의 불안정 특성)

  • 임정빈;권영필
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.1005-1011
    • /
    • 1999
  • Generation of hole-tones and the instability of circular impinging jets are investigated based on the frequency characteristics and the radiated sound field. The experiment is carried out with varying hole sizes, jet speeds and impinging distances. It is found that hole-tones occur by both the low-speed laminar jet and the high-speed turbulent jet, but not by the transient jet, while plate-tones without holes are produced only in the high-speed turbulent impinging jet. When the diameter ratio of the hole to the nozzle is nearly one, hole-tones occur most easily. At low speed, it is found that hole-tones are due to the symmetrical unstable jet and the impinging distance decreases with jet speed. And the Strouhal number and the sound pressure level increase with jet speed. At high speed, hole-tones show the same characteristics as plate-tones. It is found that the ratio of the convection speed varies with the Strouhal number and the jet speed.

  • PDF

Natural Vibration Analysis of Two Circular Plates Coupled with Bounded Fluid (갇힌 유체로 연성된 두 원판의 고유진동 해석)

  • 정명조;정경훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.9
    • /
    • pp.439-453
    • /
    • 2001
  • This study deals with the free vibration of two identical circular plates coupled with a bounded fluid. An analytical method based on the finite Fourier-Bessel series expansion and Rayleigh-Ritz method is suggested. In the theory, it is assumed that the ideal fluid in a rigid cylindrical container and the two plates are clamped along the plate edges. The proposed method is verified by the finite element analysis using commercial program with a good accuracy. Two transverse vibration modes, namely in-phase and out-of-phase, are observed alternately in the fluid-coupled system when the number of nodal circles increases for the fixed nodal diameter. The effect of gap between the plates on the fluid-coupled natural frequencies sis also investigated.

  • PDF

Numerical approaches for vibration response of annular and circular composite plates

  • Baltacioglu, Ali Kemal;Civalek, Omer
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.759-770
    • /
    • 2018
  • In the present investigation, by using the two numerical methods, free vibration analysis of laminated annular and annular sector plates have been studied. In order to obtain the main equations two different shell theories such as Love's shell theory and first-order shear deformation theory (FSDT) have been used for modeling. After obtaining the fundamental equations in briefly, the methods of harmonic differential quadrature (HDQ) and discrete singular convolution (DSC) are used to solve the equation of motion. Accuracy, convergence and reliability of the present HDQ and DSC methods were tested by comparing the existing results obtained by different methods in the literature. The effects of some geometric and material properties of the plates are investigated via these two methods. The advantages and accuracy of the HDQ and DSC methods have also been examined with different grid numbers and shell theory. Some results for laminated annular plates and laminated circular plates were also been supplied.

The influence of initial stresses on energy release rate and total electro-mechanical potential energy for penny-shaped interface cracks in PZT/Elastic/PZT sandwich circular plate-disc

  • Akbarov, Surkay D.;Cafarova, Fazile I.;Yahnioglu, Nazmiye
    • Smart Structures and Systems
    • /
    • v.22 no.3
    • /
    • pp.259-276
    • /
    • 2018
  • This paper studies the energies and energy release rate (ERR) for the initially rotationally symmetric compressed (or stretched) in the inward (outward) radial direction of the PZT/Elastic/PZT sandwich circular plate with interface penny-shaped cracks. The investigations are made by utilizing the so-called three-dimensional linearized field equations and relations of electro-elasticity for piezoelectric materials. The quantities related to the initial stress state are determined within the scope of the classical linear theory of piezoelectricity. Mathematical formulation of the corresponding problem and determination of the quantities related to the stress-strain state which appear as a result of the action of the uniformly normal additional opening forces acting on the penny-shaped crack's edges are made within the scope of the aforementioned three-dimensional linearized field equations solution which is obtained with the use of the FEM modelling. Numerical results of the energies and ERR and the influence of the problem parameters on these quantities are presented and discussed for the PZT- 5H/Al/PZT-5H, PZT-4/Al/PZT-4, $BaTiO_3/Al/BaTiO_3$ and PZT-5H/StPZT-5H sandwich plates. In particular, it is established that the magnitude of the influence of the piezoelectricity and initial loading on the ERR increases with crack radius length.

Flow and Heat Transfer Characteristics of Impinging Single Circular Swirl Jet on Flat Plate (원형 선회류제트 충돌면에서의 유동 및 열전달 특성)

  • Jang, Jong-Chul;Jeon, Young-Woo;Park, Si-Woo;Chung, In-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.118-125
    • /
    • 2004
  • The experimental study on flow and heat transfer characteristics was conducted to investigate and to compare the performance of swirl jet by a twisted tape as a swirl generator with the performance of impinging single circular jet in fully developed flow tube. The effects of jet Reynolds number(Re=8700, 13800, 20000, 26500), dimensionless distance of nozzle-to-plate(H/d=2, 4, 6, 8) and swirl ratio(S=0.11, 0.23, 0.30) of the jet on the local and average Nusselt number have been examined. Measurements of local heat transfer rate and flow patterns on the jet impinging plate were used naphthalene sublimation technique and flow visualization technique respectively. Mean velocity and turbulence intensity of the jet along the centerline were measured. With a twisted tape in the nozzle exit, average Nusselt number at the around area of stagnation point were higher than those without the twisted tape at H/d=2, 4 and with the increase of Reynolds number. With a twisted tape in the nozzle, in the case of H/d=2, Re=26500 and S=0.11, maximum local Nusselt number at the region of y/d=0 and x/d=0.44 was obtained.