• Title/Summary/Keyword: Circle model

Search Result 296, Processing Time 0.025 seconds

Design of Electromagnetic Actuator with Three-Link Mechanism for Air Circuit Breaker (기중 차단기용 전자석 조작기 및 3절 링크 설계)

  • Kim, Rae-Eun;Kwak, Sang-Yeop;Jung, Hyun-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1321-1328
    • /
    • 2009
  • In this paper, an electromagnetic force driving actuator (EMFA) and three-link mechanism are proposed as a driving mechanism and connection device for low voltage air circuit breaker (ACB). As the result of dynamic characteristic analysis, the actuator and link mechanism are designed from the simulation and manufactured. The magneitc field of the EMFA is analyzed using the finite element method (FEM). The dynamic characteristic analysis with calculation of the circuit equation and kinetical equation is performed by the time difference method (TDM). Also, the result of the analysis is verified through the experiment of the fabrication model. In this paper, the EMFA size is smaller than the actuator for high voltage circuit breaker. Thus, the dynamic characteristic is analyzed with end-winding inductance that is calculated by the same method which is applied on the circle type end-winding of motors. The designed model for 1600 ampere-frame ACB and the three-link mechanism for connecting contact part with actuating part are manufactured. It is confirmed that the three-link mechanism is possible for improving the circuit breaker efficiency and reducing the size of the EMFA. It is proved that the improved 2-D analysis is more accurate than established method.

Centrifuge Model Tests on the Pullout Capacity of Embedded Suction Anchor without Flanges in Sand layer (모래지반에 매입된 날개없는 석션앵커의 인발력에 대한 원심모형실험)

  • Kim, Kyoung-O;Kim, You-Seok;Ko, Boo-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.517-520
    • /
    • 2005
  • The embedded suction anchor(ESA) is and anchor that is driven by a suction pile. The cross-sectional shape of the ESA anchor is circle. Its diameter is the same as that of the suction pile that is used to drive it into the seafloor. For the installation, the anchor is attached to the tip of the suction pile and then driven as a unit with the pile by and applied suction pressure. Once the ESA anchor reaches the desired depth, the pile is retrieved by applying a positive pressure. Finally, only the ESA anchor remains in the soil layer. This paper presents the results of centrifuge model tests to investigate ESA pullout capacity. The main parameters that have effects on the pullout capacity of ESA may include g-level, embedded depth, direction of loading, and loading point. The results of tests show that the pullout loading capacities increase as the loading point shift toward the tip of the anchors for a given loading direction. They also indicate that the loading point associated with the maximum pullout loading capacity is located at approximately 67 percent of the anchor length from the top for the horizontal load.

  • PDF

Torusity Tolerance Verification using Swarm Intelligence

  • Prakasvudhisarn, Chakguy;Kunnapapdeelert, Siwaporn
    • Industrial Engineering and Management Systems
    • /
    • v.6 no.2
    • /
    • pp.94-105
    • /
    • 2007
  • Measurement technology plays an important role in discrete manufacturing industry. Probe-type coordinate measuring machines (CMMs) are normally used to capture the geometry of part features. The measured points are then fit to verify a specified geometry by using the least squares method (LSQ). However, it occasionally overestimates the tolerance zone, which leads to the rejection of some good parts. To overcome this drawback, minimum zone approaches defined by the ANSI Y14.5M-1994 standard have been extensively pursued for zone fitting in coordinate form literature for such basic features as plane, circle, cylinder and sphere. Meanwhile, complex features such as torus have been left to be dealt-with by the use of profile tolerance definition. This may be impractical when accuracy of the whole profile is desired. Hence, the true deviation model of torus is developed and then formulated as a minimax problem. Next, a relatively new and simple population based evolutionary approach, particle swarm optimization (PSO), is applied by imitating the social behavior of animals to find the minimum tolerance zone torusity. Simulated data with specified torusity zones are used to validate the deviation model. The torusity results are in close agreement with the actual torusity zones and also confirm the effectiveness of the proposed PSO when compared to those of the LSQ.

Computational modeling of buried blast-induced ground motion and ground subsidence

  • Zhang, Zhi-Chao;Liu, Han-Long;Pak, Ronald Y.S.;Chen, Yu-Min
    • Geomechanics and Engineering
    • /
    • v.7 no.6
    • /
    • pp.613-631
    • /
    • 2014
  • To complement the method of field-scale seismic ground motion simulations by buried blast techniques, the application and evaluation of the capability of a numerical modeling platform to simulate buried explosion-induced ground motion at a real soil site is presented in this paper. Upon a layout of the experimental setup at a level site wherein multiple charges that were buried over a large-diameter circle and detonated in a planned sequence, the formulation of a numerical model of the soil and the explosives using the finite element code LS-DYNA is developed for the evaluation of the resulting ground motion and surface subsidence. With a compact elastoplastic cap model calibrated for the loess soils on the basis of the site and laboratory test program, numerical solutions are obtained by explicit time integration for various dynamic aspects and their relation with the field blast experiment. Quantitative comparison of the computed ground acceleration time histories at different locations and induced spatial subsidence on the surface afterwards is given for further engineering insights in regard to the capabilities and limitations of both the numerical and experimental approaches.

A Study of the effective model and method development through Factory Saemaul Undong activity for selfcontrol small group activity in Korea (공장새마을운동 활성화를 통한 자주관리 소집단분임조활동의 추진모형과 효과적인 실천방법개발에 관한 연구)

  • 신용백
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.13 no.22
    • /
    • pp.99-111
    • /
    • 1990
  • The first national QC Circle Convention sponsored by Industry Advancement Administration in 1975 was the beginning of employees group activity from a national point view. Subsequently some events such as the first nationwide Factory Seamaul activity small Group Convention, which was supervised by the ministry of Trading and Industry and Factory Seamanulundong promotion Center, paved the way for proliferation of the group activity through all kinds of manufacturing. Although since November 1982 these two conventions has been united, many problem have been disclosed that are against the basic principle more or less. Worker's small group activity is, essentially, a trouble shooting oriented voluntary small group within their working place to improve the surroundings creatively. In practice, however, many groups are so typical and so impetuous of the material effect that it is worried to be inclined to outform rather than contents. Effective small group activities are presumed to he successful only with labor management cooperation on the basis of human-oriented management philosophy. The small group activities are also prevalent in service sector. More derivative methods have been developed and more members are willingly participating in training programs. The small group which is basically a horizontal organization unit, promotes communication within the whole organization. In consideration of the social circumstances and traditions, the flexible model of the small group activities suitable to the corporate environment, will contribute to industrial development.

  • PDF

Coupled Dynamic Simulation of a Tug-Towline-Towed Barge based on the Multiple Element Model of Towline

  • Yoon, Hyeon Kyu;Kim, Yeon Gyu
    • Journal of Navigation and Port Research
    • /
    • v.36 no.9
    • /
    • pp.707-714
    • /
    • 2012
  • Recently, tug boats are widely used for towing a barge which transports building materials, a large block of a ship, offshore crane, and so on. In order to simulate the dynamics of the coupled towing system correctly, the dynamics of the towline should be well modeled. In this paper, the towline was modeled as the multiple finite elements, and each element was assumed as a rigid cylinder which moves in five degrees of freedom except roll. The external tension and its moment acting on each element of the towline were modeled depending on the position vector's direction. Tugboat's motion was simulated in six degrees of freedom where wave and current effects were included, and towed barge was assumed to move in the horizontal plane only. In order to confirm the mathematical models of the coupled towing systems, standard maneuvering trials such as course changing maneuver, turning circle test and zig-zag test were simulated. In addition, the same trials were simulated when the external disturbances like wave and current exist. As the result, it is supposed that the results might be qualitatively reasonable.

A study on the effective approach model improvement of small group activity for active TQC application in korea (TQC활성화(活性化)를 위한 국내(國內) 소집단(小集團) 분임조(分任組) 활동(活動)의 현황문제점(現況問題點)과 개선방향(改善方向))

  • Sin, Yong-Baek
    • Journal of Korean Society for Quality Management
    • /
    • v.19 no.1
    • /
    • pp.115-128
    • /
    • 1991
  • In korea, since November 1982 these two small group actvity convension (QC circle convension and Factory Saemaul activity small group convension) has been united, many problem have been disclosed that are against the basic principle more or less. Worker's small group activity is essentially, a trouble shooting oriented voluntary small group within their working place to improve the surroundings creatively. In practice. however, many group are so typical and so impetuous of the material effect that it is worried to be inclined to outform rather than contents. Effective small group activities are presumed to be successful only with labor management cooperation on the basis of human-orient management philosophy. The small group activities are also prevalent in service sector. More derivative methods have been developed and more members are willingly participating in training programs. The small group which is basically a horizontal organization unit, promptes communication within the whole organization. In consideration of the social circumstances and traditions, the flexible model of the small group activities suitable to the corporate environment, will contribute industrial development.

  • PDF

Stability Analysis of the Slopes (사면의 안정해석에 관한 연구)

  • 강우욱;조성섭;지인택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.1
    • /
    • pp.58-70
    • /
    • 1989
  • The paper compared the Bishop methed to the Fellenius method in the analysis of slope stability. Laboratory model test was carried out in the case of seepage flow considered. The results obtained from this study were summarized as follows; 1. The slice pieces of 10 were enough to analysis the slope stability. 2. The safety factor. by the Fellenius method was lower than the Bishop method by the 96 to 97% in the case of no seepage flow and by the 95 to 96% in the case of seepage flow considered. 3. Besides the parameter of soil and slope, the safety factor of slope was influenced by the height of slope. This phenomena was distinct in the height of height less than 10 meters. 4. In the case of clay, there was no difference in the safety factor of slope between Fellenius and Bishop rnethod. The safety factors of slope with the seepage flow considered were lower than those with no see-page flow. 5. The influence of cohesion on the safety factor was more significant in the Bishop method than in the Fellenius method. 6. The slope failure of model test of A and B soil samples with high permeability coefficient was taken place slightly in vicinity of toe by the concentration of stress and gradually increased 7. Under condition of same slope height, the shapper the slope, the shorter the radius and the center of critical circle appered downward and finally failure of slope occured inside the slope.

  • PDF

A set of failure variables for analyzing stability of slopes and tunnels

  • Kim, Jun-Mo;Lee, Sungho;Park, Jai-Yong;Kihm, Jung-Hwi;Park, Sangho
    • Geomechanics and Engineering
    • /
    • v.20 no.3
    • /
    • pp.175-189
    • /
    • 2020
  • A set of relatively simple five local shear and tension failure variables is presented and then implemented into a generalized poroelastic hydromechanical numerical model to analyze failure potential and stability of variably saturated geologic media. These five local shear and tension failure variables are formulated from geometrical relationships between the Mohr circle and the Mohr-Coulomb failure criterion superimposed with the tension cutoff, which approximate together the Mohr effective stress failure envelope. Finally, fully coupled groundwater flow and land deformation in two variably saturated geologic media, which are associated with a slope (Case 1) and a tunnel (Case 2), respectively, and their failure potential and stability are simulated using the resultant hydromechanical numerical model. The numerical simulation results of both cases show that shear and tension failure potential and stability of variably saturated geologic media can be analyzed numerically simply and efficiently and even better by using the five local shear and tension failure variables as a set than by using the conventional factors of safety against shear and tension failures only.

Prediction of Ship Manoeuvrability in Initial Design Stage Using CFD Based Calculation

  • Cho, Yu-Rim;Yoon, Bum-Sang;Yum, Deuk-Joon;Lee, Myen-Sik
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.1
    • /
    • pp.11-24
    • /
    • 2007
  • Better prediction of a ship's manouevrabilty in initial design stage is becoming more, important as IMO manoeuvring criteria has been activated in the year of 2004. In the present study, in order to obtain more exact and reliable results for ship manoeuvrability in the initial design stage, numerical simulation is carried out by use of RANS equation based calculation of hydrodynamic forces exerted upon the ship hull. Other forces such as rudder force and propeller force are estimated by one of the empirical models recommended by MMG Group. Calculated hydrodynamic force coefficients are compared with those obtained by empirical models. Standard manoeuvring simulations such as turning circle and zig-zag are also carried out for a medium size Product Carrier and the results are compared with those of pure empirical models and manoeuvring sea trial. Generally good qualitative agreement is obtained in hydrodynamic forces due to steady oblique motion and steady turning motion between the results of CFD calculation and those of MMG model, which is based on empirical formulas. The results of standard manoeuvring simulation also show good agreement with sea trial results.