• Title/Summary/Keyword: Cigarette smoke extract

Search Result 53, Processing Time 0.021 seconds

Effects of Antioxidant on Oxidative Stress and Autophagy in Bronchial Epithelial Cells Exposed to Particulate Matter and Cigarette Smoke Extract

  • Hur, Jung;Rhee, Chin Kook;Jo, Yong Suk
    • Tuberculosis and Respiratory Diseases
    • /
    • v.85 no.3
    • /
    • pp.237-248
    • /
    • 2022
  • Background: We evaluated the effect of particulate matter (PM) and cigarette smoke extract (CSE) on bronchial epithelial cell survival, as well as oxidative stress and autophagy levels. Moreover, we aimed to assess the effect of the antioxidant N-acetylcysteine (NAC) on the adverse effects of PM and CSE exposure. Methods: Normal human bronchial epithelial cells (BEAS-2B cells) were exposed to urban PM with or without CSE, after which cytotoxic effects, including oxidative stress and autophagy levels, were measured. After identifying the toxic effects of urban PM and CSE exposure, the effects of NAC treatment on cell damage were evaluated. Results: Urban PM significantly decreased cell viability in a concentration-dependent manner, which was further aggravated by simultaneous treatment with CSE. Notably, pretreatment with NAC at 10 mM for 1 hour reversed the cytotoxic effects of PM and CSE co-exposure. Treatment with 1, 5, and 10 mM NAC was shown to decrease reactive oxygen species levels induced by exposure to both PM and CSE. Additionally, the autophagy response assessed via LC3B expression was increased by PM and CSE exposure, and this also attenuated by NAC treatment. Conclusion: The toxic effects of PM and CSE co-exposure on human bronchial epithelial cells, including decreased cell viability and increased oxidative stress and autophagy levels, could be partly prevented by NAC treatment.

Bulb of Lilium longiflorum Thunb Extract Fermented with Lactobacillus acidophilus Reduces Inflammation in a Chronic Obstructive Pulmonary Disease Model

  • Ji-Eun Eom;Gun-Dong Kim;Young In Kim;Kyung min Lim;Ju Hye Song;Yiseul Kim;Hyeon-Ji Song;Dong-Uk Shin;Eun Yeong Lim;Ha-Jung Kim;Sung Hoon Kim;Deuk Sik Lee;So-Young Lee;Hee Soon Shin
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.5
    • /
    • pp.634-643
    • /
    • 2023
  • Chronic obstructive pulmonary disease (COPD), one of the leading causes of death worldwide, is caused by repeated exposure to harmful matter, such as cigarette smoke. Although Lilium longiflorum Thunb (LLT) has anti-inflammatory effects, there is no report on the fermented LLT bulb extract regulating lung inflammation in COPD. Thus, we investigated the protective effect of LLT bulb extract fermented with Lactobacillus acidophilus 803 in COPD mouse models induced by cigarette smoke extract (CSE) and porcine pancreas elastase (PPE). Oral administration of the fermented product (LS803) suppressed the production of inflammatory mediators and the infiltration of immune cells involving neutrophils and macrophages, resulting in protective effects against lung damage. In addition, LS803 inhibited CSE- and LPS-induced IL-6 and IL-8 production in airway epithelial H292 cells as well as suppressed PMA-induced formation of neutrophil extracellular traps in HL-60 cells. In particular, LS803 significantly repressed the elevated IL-6 and MIP-2 production after CSE and LPS stimulation by suppressing the activity of the nuclear factor kappa-light-chain-enhancer of activated B (NFκB) in mouse peritoneal macrophages. Therefore, our results suggest that the fermented product LS803 is effective in preventing and alleviating lung inflammation.

The Impact of Autophagy on the Cigarette Smoke Extract-Induced Apoptosis of Bronchial Epithelial Cells

  • Lee, Chang-Hoon;Lee, Kyoung-Hee;Jang, An-Hee;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.80 no.1
    • /
    • pp.83-89
    • /
    • 2017
  • Background: Previous studies report that apoptosis and autophagy are involved in the pathogenesis of emphysema, and macroautophagy is one of the processes regulating the apoptosis pathway. However, few studies have evaluated whether chaperone-mediated autophagy (CMA) contributes to the regulation of apoptosis. In this study, we investigated the impact of autophagy, including both macroautophagy and CMA, on the apoptosis in bronchial epithelial cells. Methods: Cigarette smoke extract (CSE) was injected intratracheally into C57BL/6 mice, and emphysema and apoptosis were evaluated in the lungs. After treatment with CSE, apoptosis, macroautophagy, and CMA were measured in BEAS2-B cells, and the impact of autophagy on the apoptosis was evaluated following knockdown of autophagy-related genes by short interfering RNAs (siRNAs). Results: Intratracheal CSE injection resulted in the development of emphysema and an increase in apoptosis in mice. CSE increased the apoptosis in BEAS2-B cells, and also elevated the expression of proteins related to both macroautophagy and CMA in BEAS2-B cells. The knockdown experiment with siRNAs showed that macroautophagy increases apoptosis in BEAS2-B cells, while CMA suppresses apoptosis. Conclusion: The intratracheal injection of CSE induces pulmonary emphysema and an increase in apoptosis in mice. CSE also induces apoptosis, macroautophagy, and CMA of bronchial epithelial cells. Macroautophagy and CMA regulate apoptosis in opposite directions.

The Effect of Black Stem on the Quality of Expended Stem and Cigarette (Black Stem이 팽화주맥 및 제품담배의 품질에 미치는 영향)

  • Yang, Jin-Chul;Kim, Dae-Young;No, Jae-Seong;Han, Jung-Ho;Chung, Han-Ju;Kim, Yong-Ha;Kim, Yong-Ok
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • This study was carried out to investigate the influence of stem materials such as black stem on the quality of expended stem and cigarettes. Normal and black stem were separated by tobacco scan and then, those stems were expanded after treating with their respective stem casings. Total sugar, ether extract, ash contents and pH were slightly low in black stem compared with normal stem. However, the number of bacteria and fungi ratio were remarkably higher in black stem than that of normal stem. As compared with normal stems, ratio of rushed stem in rolled process was approximately 2 times higher in black stem with the consequency that the filling capacity of black stem was decreased. The ratio of large particles (> 3.35 mm) of expanded black stem showed decreasing tendency and small particles rate (1.40 mm <) was increased compared with normal stem. When expanded stems were prepared using stem containing 5 levels (0, 10, 20, 30 and 100 %) of black stem, the filling capacity was decreased and static burning rate was significantly decreased with increasing expanded black stem rate. However, the weight and hardness of cigarettes were slightly increased with increasing expanded black stem rate. The contents of phenol compounds, aromatic amines and carbonyl compounds in the cigarette mainstream smoke from the cigarette which was manufactured with various ratio of expended black stem, were gradually increased with increasing expanded black stem rates. Also, the cytotoxicity and the mutagenicity of the TPM were significantly increased with increasing expanded black stem rate. The sensory test result showed that cigarettes blended with 10 and 30 % level of black stem rate was exhibited significantly high sensory attributions such as off-taste, impact, hotness, bitterness and irritation as compared with cigarette blended with normal stem, while smoke fullness and cleanness were slightly decreased with increasing expanded black stem rates. The number of brown spots on cigarettes paper was 2 to 3 times high in cigarettes containing black stem than that of cigarette made from normal stem and were high with increasing black stem rate. The overall assessment in this study suggest, that black stem should not be used because of bad quality of expanded stem and high toxicological activity of cigarette mainstream smoke.

Inhibition of PKC Epsilon Attenuates Cigarette Smoke Extract-Induced Apoptosis in Human Lung Fibroblasts (MRC-5 Cells)

  • Kang, Shin-Myung;Yoon, Jin-Young;Kim, Yu-Jin;Lee, Sang-Pyo;Jeong, Sung-Hwan;Park, Jeong-Woong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.71 no.2
    • /
    • pp.88-96
    • /
    • 2011
  • Background: It is known that cigarette smoke (CS) causes cell death. Apoptotic cell death is involved in the pathogenesis of CS-related lung diseases. Some members of the protein kinase C (PKC) family have roles in cigarette smoke extract (CSE)-induced apoptosis. This study was conducted to investigate the role of PKC epsilon in CSE-induced apoptosis in human lung fibroblast cell line, MRC-5. Methods: Lactate dehydrogenase release was measured using a cytotoxicity detection kit. The MTT assay was used to measure cell viability. Western immunoblot, Hoechst 33342 staining and flow cytometry were used to demonstrate the effect of $PKC{\varepsilon}$. Caspase-3 and caspase-8 activities were determined using a colorimetric assay. To examine $PKC{\varepsilon}$ activation, Western blotting was performed using both fractions of membrane and cytosol. Results: We showed that CSE activated $PKC{\varepsilon}$ by demonstrating increased expression of $PKC{\varepsilon}$ in the plasma membrane fraction. Pre-treatment of $PKC{\varepsilon}$ peptide inhibitor attenuated CSE-induced apoptotic cell death, as demonstrated by the MTT assay (13.03% of control, 85.66% of CSE-treatment, and 53.73% of $PKC{\varepsilon}$ peptide inhibitor-pre-treatment, respectively), Hoechst 33342 staining, and flow cytometry (85.64% of CSE-treatment, 53.73% of $PKC{\varepsilon}$ peptide inhibitor-pre-treatment). Pre-treatment of $PKC{\varepsilon}$ peptide inhibitor reduced caspase-3 expression and attenuated caspase-3, caspase-8 activity compared with CSE treatment alone. Conclusion: $PKC{\varepsilon}$ seem to have pro-apoptotic function and exerts its function through the extrinsic apoptotic pathway in CSE-exposed MRC-5 cells. This study suggests that $PKC{\varepsilon}$ inhibition may be a therapeutic strategy in CS-related lung disease such as chronic obstructive pulmonary disease.

Inhibitory Effects of Ssanghwa-tang on Lung Injury and Muscle Loss in a Cigarette Smoke Extract and Lipopolysaccharide-induced Chronic Obstructive Pulmonary Disease Mouse Model (표준담배추출물과 Lipopolysaccharide로 유발한 만성폐쇄성폐질환 동물모델에서 쌍화탕의 폐손상 및 근감소 억제 효과)

  • Jin-kwan Choi;Won-kyung Yang;Su-won Lee;Seong-cheon Woo;Seung-hyung Kim;Yang-chun Park
    • The Journal of Internal Korean Medicine
    • /
    • v.45 no.1
    • /
    • pp.11-30
    • /
    • 2024
  • Objectives: This study evaluated the effects of Ssanghwa-tang (SHT) on lung injury and muscle loss in a COPD mouse model. Methods: C57BL/6 mice were challenged with cigarette smoke extract and lipopolysaccharide, and then treated with two concentrations of SHT (250 and 500 mg/kg). After sacrifice, the bronchoalveolar lavage fluid (BALF) or lung tissue was analyzed by cytospin, ELISA, real-time PCR, flow cytometry analysis, and H&E and Masson's trichrome staining. The grip strength of COPD mice was measured using a grip strength meter. The running time of COPD mice was measured by a treadmill test. Muscle tissue of the quadriceps was stained with H&E and Masson's trichrome staining. Results: SHT significantly inhibited the increase in neutrophil numbers in BALF and significantly decreased immune cell activity in BALF and lung tissue. It also significantly inhibited the increase in TNF-α, IL-17, and MIP2 in BALF. Real-time PCR analysis revealed that the mRNA expression of TNF-α, IL-17, MIP2, and TRPV1 in lung tissue showed a significant decrease compared with the control group. Lung tissue damage was significantly reduced in the histological analysis. The grip strength and running time of the COPD mice showed a significant decrease compared with the control group. In histological staining, SHT was found to reduce the damage to muscle tissue. Conclusions: This study indicates that SHT can be used as a therapeutic agent for COPD patients by inhibiting lung injury and muscle loss.

Effect of Pyunkang-tang on Inflammatory Aspects of Chronic Obstructive Pulmonary Disease in a Rat Model

  • Seo, Hyo-Seok;Lee, Hyun Jae;Lee, Choong Jae
    • Natural Product Sciences
    • /
    • v.25 no.2
    • /
    • pp.103-110
    • /
    • 2019
  • We investigated the anti-inflammatory effect of Pyunkang-tang extract (PGT), a complex herbal extract based on traditional Chinese medicine that is used in Korea for controlling diverse pulmonary diseases, on cigarette smoke-induced pulmonary pathology in a rat model of chronic obstructive pulmonary disease (COPD). The constituents of PGT were Lonicerae japonica, Liriope platyphylla, Adenophora triphilla, Xantium strumarinum, Selaginella tamariscina and Rehmannia glutinosa. Rats were exposed by inhalation to a mixture of cigarette smoke extract (CSE) and sulfur dioxide for three weeks to induce COPD-like pulmonary inflammation. PGT was administered orally to rats and pathological changes to the pulmonary system were examined in each group of animals through measurement of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin-6 (IL-6) levels in bronchoalveolar lavage fluid (BALF) at 21 days post-CSE treatment. The effect of PGT on the hypersecretion of pulmonary mucin in rats was assessed by quantification of the amount of mucus secreted and by examining histopathologic changes in tracheal epithelium. Confluent NCI-H292 cells were pretreated with PGT for 30 min and then stimulated with CSE plus PMA (phorbol 12-myristate 13-acetate), for 24 h. The MUC5AC mucin gene expression was measured by RT-PCR. Production of MUC5AC mucin protein was measured by ELISA. The results were as follows: (1) PGT inhibited CSE-induced pulmonary inflammation as shown by decreased TNF-${\alpha}$ and IL-6 levels in BALF; (2) PGT inhibited the hypersecretion of pulmonary mucin and normalized the increased amount of mucosubstances in goblet cells of the CSE-induced COPD rat model; (3) PGT inhibited CSE-induced MUC5AC mucin production and gene expression in vitro in NCI-H292 cells, a human airway epithelial cell line. These results suggest that PGT might regulate the inflammatory aspects of COPD in a rat model.

Effects of GHX02 on Chronic Obstructive Pulmonary Disease Mouse Model

  • Yang, Won-Kyung;Lyu, Yee Ran;Kim, Seung-Hyung;Park, Yang Chun
    • The Journal of Korean Medicine
    • /
    • v.39 no.4
    • /
    • pp.126-135
    • /
    • 2018
  • Objectives: Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation and irreversible airflow. This study aimed to evaluate the effects of GHX02 in a COPD-induced mouse model. Methods: The COPD mouse model was established by exposure to cigarette smoke extract and lipopolysaccharide which were administered by intratracheal injection three times with a 7 day interval. GHX02 (100, 200, 400 mg/kg) and all other drugs were orally administrated for 14 days from Day 7 to Day 21. Results: GHX02 significantly decreased the neutrophil counts in bronchoalveolar lavage fluid (BALF) and the number of $CD4^+$, $CD8^+$, $CD69^+$, and $CD11b^+/GR1^+$ cells in BALF and lung cells. GHX02 also suppressed the secretion of tumor necrosis factor-alpha ($TNF-{\alpha}$), interleukin-17A, macrophage inflammatory protein 2 (MIP2), and chemokine (C-X-C motif) ligand 1 (CXCL-1) in BALF and ameliorated the lung pathological changes. Conclusions: Thus, GHX02 effectively inhibited airway inflammation by inhibiting migration of inflammatory cells and expression of pro-inflammatory cytokines. Therefore, GHX02 may be a promising therapeutic agent for COPD.

EFFECT OF OZONIZATION ON THE QUALITIES OF LOWER GRADE TOBACCO LEAF (하등급 잎담배의 Ozone처리 효과에 관한 연구)

  • 김형갑;김웅주
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.6 no.2
    • /
    • pp.215-219
    • /
    • 1984
  • This experiment was conducted to investigate the effect of physical and chemical characteristics of lower grade tobacco with treatment of ozone. In ozonization of low grade tobacco, optimum moisture was 20 percentage, and decrease ratio of content of tobacco leaf was 30 percentage in nicotine , 15.9 percentage in total volatile base, 10.5 percentage in petroleum-ether-extract, 29.5 percentage in solanesol, and decrease ratio of cigarette smoke composition was 31 percentage in nicotine, 6.08 percentage in tar.

  • PDF