Browse > Article
http://dx.doi.org/10.13048/jkm.18040

Effects of GHX02 on Chronic Obstructive Pulmonary Disease Mouse Model  

Yang, Won-Kyung (Institute of Traditional Medicine and Bioscience, Daejeon University)
Lyu, Yee Ran (Division of Respiratory System, Dep. of Internal Medicine, College of Korean Medicine, Daejeon University)
Kim, Seung-Hyung (Institute of Traditional Medicine and Bioscience, Daejeon University)
Park, Yang Chun (Institute of Traditional Medicine and Bioscience, Daejeon University)
Publication Information
The Journal of Korean Medicine / v.39, no.4, 2018 , pp. 126-135 More about this Journal
Abstract
Objectives: Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation and irreversible airflow. This study aimed to evaluate the effects of GHX02 in a COPD-induced mouse model. Methods: The COPD mouse model was established by exposure to cigarette smoke extract and lipopolysaccharide which were administered by intratracheal injection three times with a 7 day interval. GHX02 (100, 200, 400 mg/kg) and all other drugs were orally administrated for 14 days from Day 7 to Day 21. Results: GHX02 significantly decreased the neutrophil counts in bronchoalveolar lavage fluid (BALF) and the number of $CD4^+$, $CD8^+$, $CD69^+$, and $CD11b^+/GR1^+$ cells in BALF and lung cells. GHX02 also suppressed the secretion of tumor necrosis factor-alpha ($TNF-{\alpha}$), interleukin-17A, macrophage inflammatory protein 2 (MIP2), and chemokine (C-X-C motif) ligand 1 (CXCL-1) in BALF and ameliorated the lung pathological changes. Conclusions: Thus, GHX02 effectively inhibited airway inflammation by inhibiting migration of inflammatory cells and expression of pro-inflammatory cytokines. Therefore, GHX02 may be a promising therapeutic agent for COPD.
Keywords
chronic obstructive pulmonary disease; cigarette smoke; airway inflammation; herbal medicine; GHX02;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kim V, Han MK, Vance GB, Make BJ, Newell JD, Hokanson JE, et al. The chronic bronchitic phenotype of COPD: an analysis of the COPDGene Study. Chest. 2011;140(3):626-33.   DOI
2 Adeloye D, Chua S, Lee C, Basquill C, Papana A, Theodoratou E, et al. Global and regional estimates of COPD prevalence: Systematic review and meta-analysis. Journal of global health. 2015;5(2).
3 Gan WQ, FitzGerald JM, Carlsten C, Sadatsafavi M, Brauer M. Associations of ambient air pollution with chronic obstructive pulmonary disease hospitalization and mortality. American journal of respiratory and critical care medicine. 2013;187(7):721-7.   DOI
4 Meijer M, Rijkers GT, Van Overveld FJ. Neutrophils and emerging targets for treatment in chronic obstructive pulmonary disease. Expert review of clinical immunology. 2013;9(11):1055-68.   DOI
5 Barnes PJ. The cytokine network in asthma and chronic obstructive pulmonary disease. The Journal of clinical investigation. 2008;118(11):3546-56.   DOI
6 Prause O, Bossios A, Silverpil E, Ivanov S, Bozinovski S, Vlahos R, et al. IL-17-producing T lymphocytes in lung tissue and in the bronchoalveolar space after exposure to endotoxin from Escherichia coli in vivo-effects of anti-inflammatory pharmacotherapy. Pulmonary pharmacology & therapeutics. 2009;22(3):199-207.   DOI
7 Caramori G, Adcock IM, Di Stefano A, Chung KF. Cytokine inhibition in the treatment of COPD. International journal of chronic obstructive pulmonary disease. 2014;9:397.
8 Van Minh C, Nhiem NX, Yen HT, Van Kiem P, Tai BH, Anh HLT, et al. Chemical constituents of Trichosanthes kirilowii and their cytotoxic activities. Archives of pharmacal research. 2015;38(8):1443-8.   DOI
9 Spurzem JR, Rennard SI. Pathogenesis of COPD. in Seminars in respiratory and critical care medicine 2005. New York:Thieme Medical Publishers. c1994-.
10 Woodruff PG, Agusti A, Roche N, Singh D, Martinez FJ. Current concepts in targeting chronic obstructive pulmonary disease pharmacotherapy: making progress towards personalised management. The Lancet. 2015;385(9979):1789-98.   DOI
11 Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. Journal of Allergy and Clinical Immunology. 2016;138(1):16-27.   DOI
12 Cosio MG, Saetta M, Agusti A. Immunologic aspects of chronic obstructive pulmonary disease. New England Journal of Medicine. 2009;360(23):2445-54.   DOI
13 Oostwoud L, Gunasinghe P, Seow H, Ye J, Selemidis S, Bozinovski S, et al. Apocynin and ebselen reduce influenza A virus-induced lung inflammation in cigarette smoke-exposed mice. Scientific reports. 2016;6:20983.   DOI
14 Kim HW, Yang SY, Kim MH, NamGung U, Park YC. Protective effects of Maekmundong-tang on elastase-induced lung injury. The Journal of Korean Medicine. 2011;32.
15 Chang HK, Yang HY, Lee TH, Shin MC, Lee MH, Shin MS, et al. Armeniacae semen extract suppresses lipopolysaccharide-induced expressions of cycloosygenase-2 and inducible nitric oxide synthase in mouse BV2 microglial cells. Biological and Pharmaceutical Bulletin. 2005;28(3):449-54.   DOI
16 Yokozawa T, Ishida A, Cho EJ, Kim HY, Kashiwada Y, Ikeshiro Y. Coptidis Rhizoma: protective effects against peroxynitrite-induced oxidative damage and elucidation of its active components. Journal of pharmacy and pharmacology. 2004;56(4):547-56.   DOI
17 Kim JM, Jung HA, Choi JS, Lee NG. Identification of anti-inflammatory target genes of Rhizoma coptidis extract in lipopolysaccharide-stimulated RAW264. 7 murine macrophage-like cells. Journal of Ethnopharmacology. 2010;130(2):354-62.   DOI
18 George J, Ioannides-Demos LL, Santamaria NM, Kong DC, Stewart K. Use of complementary and alternative medicines by patients with chronic obstructive pulmonary disease. Medical Journal of Australia. 2004;181(5):248.   DOI
19 Lee ES, Han JM, Kim MH, Namgung U, Yeo Y, Park YC. Effects of Inhalable Microparticles of on Chronic Obstructive Pulmonary Disease in a Mouse Model. Journal of Korean Medicine. 2013;34(3):54-68.   DOI
20 Lee H, Kim Y, Kim HJ, Park S, Jang YP, Jung S, et al. Herbal formula, PM014, attenuates lung inflammation in a murine model of chronic obstructive pulmonary disease. Evidence-Based Complementary and Alternative Medicine. 2012;2012.
21 Caramori G, Casolari P, Giuffre S, Barczyk A, Adcock I, Papi A. COPD pathology in the small airways. Panminerva medica. 2011;53(1):51-70.
22 Celli BR, MacNee W, Agusti A, Anzueto A, Berg B, Buist AS, et al. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. European Respiratory Journal. 2004;23(6):932-46.   DOI
23 Donohue JF, Fogarty C, Lotvall J, Mahler DA, Worth H, Yorgancioglu A, et al. Once-daily bronchodilators for chronic obstructive pulmonary disease: indacaterol versus tiotropium. American journal of respiratory and critical care medicine. 2010;182(2):155-62.   DOI
24 Barnes PJ, Adcock IM. Glucocorticoid resistance in inflammatory diseases. The Lancet. 2009;373(9678):1905-17.   DOI
25 Calverley PM, Anderson JA, Celli B, Ferguson GT, Jenkins C, Jones PW, et al. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. New England Journal of Medicine. 2007;356(8):775-89.   DOI
26 Kim OS, Seo CS, Kim Y, Shin HK, Ha H. Extracts of Scutellariae Radix inhibit low-density lipoprotein oxidation and the lipopolysaccharide-induced macrophage inflammatory response. Molecular medicine reports. 2015;12(1):1335-41.   DOI
27 Han JM, Yang WK, Kim SH, Park YC. Effects of Sagan-tang and individual herbs on COPD mice model. Herbal Formula Science. 2015;23(2):171-87.   DOI
28 Lee CW, Yang WK, Lyu YR, Kim SH, Park YC. Effects of Gwaruhaengryeon-hwan on COPD and Particulate Matter Induced Lung Injury on a Mouse Model. The Journal of Internal Korean Medicine. 2017;38(3):353-66.   DOI
29 Heo J. Dong-Ui-Bo-Gam. Hadong:Donguibogam Publish. 2005:1341.
30 Guo M, Zhang N, Li D, Liang D, Liu Z, Li F, et al. Baicalin plays an anti-inflammatory role through reducing nuclear $factor-{\kappa}B$ and p38 phosphorylation in S. aureus-induced mastitis. International immunopharmacology. 2013;16(2):125-30.   DOI
31 Gueders MM, Paulissen G, Crahay C, Quesada-Calvo F, Hacha J, Van Hove C, et al. Mouse models of asthma: a comparison between C57BL/6 and BALB/c strains regarding bronchial responsiveness, inflammation, and cytokine production. Inflammation research. 2009;58(12):845.   DOI
32 Mizutani N, Fuchikami JI, Takahashi M, Nabe T, Yoshino S, Kohno S. Pulmonary emphysema induced by cigarette smoke solution and lipopolysaccharide in guinea pigs. Biological and Pharmaceutical Bulletin. 2009;32(9):1559-64.   DOI
33 O'donnell R, Breen D, Wilson S, Djukanovic R. Inflammatory cells in the airways in COPD. Thorax. 2006;61(5):448-54.   DOI
34 Tanaka H, Masuda T, Tokuoka S, Komai M, Nagao K, Takahashi Y, et al. The effect of allergen-induced airway inflammation on airway remodeling in a murine model of allergic asthma. Inflammation Research. 2001;50(12):616-24.   DOI