• 제목/요약/키워드: Churn Prediction

검색결과 35건 처리시간 0.026초

시맨틱 텍스트 마이닝을 위한 온톨로지 활용 방안 (Using Ontologies for Semantic Text Mining)

  • 유은지;김정철;이춘열;김남규
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제21권3호
    • /
    • pp.137-161
    • /
    • 2012
  • The increasing interest in big data analysis using various data mining techniques indicates that many commercial data mining tools now need to be equipped with fundamental text analysis modules. The most essential prerequisite for accurate analysis of text documents is an understanding of the exact semantics of each term in a document. The main difficulties in understanding the exact semantics of terms are mainly attributable to homonym and synonym problems, which is a traditional problem in the natural language processing field. Some major text mining tools provide a thesaurus to solve these problems, but a thesaurus cannot be used to resolve complex synonym problems. Furthermore, the use of a thesaurus is irrelevant to the issue of homonym problems and hence cannot solve them. In this paper, we propose a semantic text mining methodology that uses ontologies to improve the quality of text mining results by resolving the semantic ambiguity caused by homonym and synonym problems. We evaluate the practical applicability of the proposed methodology by performing a classification analysis to predict customer churn using real transactional data and Q&A articles from the "S" online shopping mall in Korea. The experiments revealed that the prediction model produced by our proposed semantic text mining method outperformed the model produced by traditional text mining in terms of prediction accuracy such as the response, captured response, and lift.

Optimization of Decision Tree for Classification Using a Particle Swarm

  • Cho, Yun-Ju;Lee, Hye-Seon;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • 제10권4호
    • /
    • pp.272-278
    • /
    • 2011
  • Decision tree as a classification tool is being used successfully in many areas such as medical diagnosis, customer churn prediction, signal detection and so on. The main advantage of decision tree classifiers is their capability to break down a complex structure into a collection of simpler structures, thus providing a solution that is easy to interpret. Since decision tree is a top-down algorithm using a divide and conquer induction process, there is a risk of reaching a local optimal solution. This paper proposes a procedure of optimally determining thresholds of the chosen variables for a decision tree using an adaptive particle swarm optimization (APSO). The proposed algorithm consists of two phases. First, we construct a decision tree and choose the relevant variables. Second, we find the optimum thresholds simultaneously using an APSO for those selected variables. To validate the proposed algorithm, several artificial and real datasets are used. We compare our results with the original CART results and show that the proposed algorithm is promising for improving prediction accuracy.

RNN을 이용한 고객 이탈 예측 및 분석 (Customer Churn Prediction Using RNN)

  • 이세희;이지형
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2016년도 제54차 하계학술대회논문집 24권2호
    • /
    • pp.45-48
    • /
    • 2016
  • 오늘날의 고객은 다양한 정보를 통해 넓은 선택의 기회를 가진다. 이러한 상황에서 기업들은 고객과의 지속적인 관계를 유지하기 어려워짐에 따라 고객 유지와 신규 고객 유치를 위한 마케팅 비용을 천문학적으로 지출하고 있다. 기업들이 이탈하는 고객의 속성을 분석하고 이탈 시점을 예측할 수 있다면 마케팅에 사용되는 비용과 노력을 최소화할 수 있을 것으로 예측된다. 이를 위해 본 논문에서는 효과적인 고객 이탈 예측을 위한 딥러닝 기반의 이탈 예측 모델을 제안한다. 이 모델은 모바일 RPG 게임 고객의 시계열적인 행동 패턴을 이용하여 이탈을 예측하는 모델로, 예측을 위한 학습을 할 때 모델링된 고객 데이터를 분석하여 이탈 고객의 특성을 파악할 수 있게 한다. 실험을 통해 이탈 고객과 미 이탈 고객의 모델링된 값이 각각 특정 속성에 치중되어 있는 것을 확인하였고, 제안 모델이 합리적으로 고객의 이탈을 예측하는 것을 보였다.

  • PDF

Logistic Regression을 이용한 이탈고객예측모형 (Churn Prediction Model using Logistic Regression)

  • 정한나;박혜진;김남형;전치혁;이재욱
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2008년도 추계학술대회 및 정기총회
    • /
    • pp.324-328
    • /
    • 2008
  • 금융산업에서 고객의 이탈비율은 기대수익에 영향을 미친다는 점에서 예측이 필요한 부분이며 최근 들어 정확한 예측을 통한 비용관리가 이루어지면서 고객 이탈을 예측하는 것이 중요한 문제로 떠오르고 있다. 그러나 보험 고객 데이터가 대용량이고 불균형한 출력 값을 갖는 특성으로 인해 기존의 방법으로 예측 모델을 만드는 것이 적합하지 않다. 본 연구에서는 대용량 데이터를 처리하는 데 효과적으로 알려져 있는 Trust-region Newton method를 적용한 로지스틱 회귀분석을 통해 이탈고객을 예측하는 것을 주된 연구로 하며, 불균형한 데이터에서의 예측정확도를 높이기 위해 Oversampling, Clustering, Boosting 등을 이용하여 고객 데이터에 적합한 이탈 고객 예측 모형을 제시하고자 한다.

  • PDF

이동통신 서비스의 고객이탈 요인에 관한 연구 (A study on customer's churning construct in the mobile communication service)

  • 남수태;김도관;이윤희;진찬용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2013년도 제48차 하계학술발표논문집 21권2호
    • /
    • pp.109-110
    • /
    • 2013
  • 국내 이동통신 서비스 시장 사업자들은 신규고객 유치에 집중하기 보다는 기존고객 유지에 더 관심을 가지고 있다. 이러한 배경에는 새로운 신규고객의 창출에 소요되는 비용이 기존고객을 유지하는 비용이 적게 들기 때문이다. 따라서 고객이탈을 발생시키는 요인이 무엇인지를 본 연구에서 알아보고자 한다.

  • PDF

사례기반추론을 이용한 다이렉트 마케팅의 고객반응예측모형의 통합

  • 홍태호;박지영
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제18권3호
    • /
    • pp.375-399
    • /
    • 2009
  • In this study, we propose a integrated model of logistic regression, artificial neural networks, support vector machines(SVM), with case-based reasoning(CBR). To predict respondents in the direct marketing is the binary classification problem as like bankruptcy prediction, IDS, churn management and so on. To solve the binary problems, we employed logistic regression, artificial neural networks, SVM. and CBR. CBR is a problem-solving technique and shows significant promise for improving the effectiveness of complex and unstructured decision making, and we can obtain excellent results through CBR in this study. Experimental results show that the classification accuracy of integration model using CBR is superior to logistic regression, artificial neural networks and SVM. When we apply the customer response model to predict respondents in the direct marketing, we have to consider from the view point of profit/cost about the misclassification.

  • PDF

머신러닝, 딥러닝을 이용한 통신서비스 이용고객 분석 및 이탈 예측 (Analysis of customer churn prediction in telecom industry using Machine learning & Deep learning)

  • 김상휘;김기원;김유성;윤태영;전재완
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.568-571
    • /
    • 2020
  • 최근 빅데이터 기술이 다양한 산업과 접목되고 있다. 그 중 고객 이탈 방지가 최우선인 통신사들 또한 예외가 아닐 수 없다. 이에 본 논문은 통신사 데이터에 머신러닝 알고리즘을 접목. 이탈 예측과 데이터 추이를 분석하고, 이를 시각화 하여 일목요연하게 표출하는 과정을 제공함으로서 통신사의 고객 유치 정책을 위한 토대를 마련할 것이다.

단측 순수성에 의한 나무모형의 성장에 대하여 (On the Tree Model grown by one-sided purity)

  • 김용대;최대우
    • 지능정보연구
    • /
    • 제7권1호
    • /
    • pp.17-25
    • /
    • 2001
  • 의사결정 나무라고 불리우기도 하는 나무모형은 결과 해석의 용이성으로 데이터마이닝의 분류예측 모형으로서 큰 각광을 받고 있다. 현재 나무모형으로 가장 많이 사용되는 CART(Breiman et al., 1984)나 C4.5(Quinlan, 1993) 모두 생성된 노드들의 자료 구성이 목표변수(target variable)를 기준으로 각 수준 구성비 측면에서 순수해지도록 진행된다. 그러나 CRM(Customer Relationship Management)에 있어 가장 흔한 주제인 해지예측을 위한 모델링을 실시하는 경우 관심의 대상인 해지자가 전체 자료에 극히 일부를 차지하여, 기존의 분할 방법에서와 같이 분할되어 생성되는 모든 노드의 순수성을 동시에 고려하기란 불가능하다 Buja와 Lee(1999)는 목표변수 중 소수의 관심에 대상이 되는 부류를 찾아내기 위한 나무모형 생성방법을 소개하였다. 즉, 해지자 관리가 중요한 경우 해지자와 비해지자 구분을 진행하는 기존의 방법과는 달리 전체 자료 중 해지자를 집중적으로 찾아가는 탐색적 분할 기준인 단측 순수성(one-sided purity)을 제안하였다. 본 연구에서는 단측 순수성에 의한 나무모형을 모 PC통신 회사의 해지자 자료에 적용하여 기존의 방법과 비교하였고 몇 가지 시뮬레이션 자료를 통해 단측 순수성의 문제점과 앞으로 해결하여야 할 과제에 대하여 살펴보았다.

  • PDF

카드산업에서 휴면 고객 예측 (Prediction of Dormant Customer in the Card Industry)

  • 이동규;신민수
    • 서비스연구
    • /
    • 제13권2호
    • /
    • pp.99-113
    • /
    • 2023
  • 고객 기반의 산업에서 고객 Retention은 기업의 경쟁력이라 할 수 있으며, 고객 Retention을 높이는 것은 기업의 경쟁력을 높이는 것이라 할 수 있다. 따라서, 미래 휴면 고객을 잘 예측하여 관리하는 것은 기업의 경쟁력을 높이는데 무엇보다 중요하다. 왜냐하면, 신규 고객을 유치하는데 필요한 비용이 기존 고객을 Lock-in 시키는데 드는 비용 보다 많은 것으로 알려져 있기 때문이다. 특히, 수 많은 카드사가 존재하는 국내 카드 산업의 휴면 카드를 관리하고자 정부에서 휴면 카드 자동 해지 제도를 도입하고 있으며, 카드 산업에서 휴면 고객을 관리하는 것이 무엇보다 중요한 과제로 떠오르고 있다. 본 연구에서는 카드 산업에서 휴면 고객을 예측하기 위해 Recurrent Neural Network (RNN)방법론을 사용하였으며, RNN방법론 중에서 긴 시간을 효율적으로 학습할 수 있는 Long-Short Term Memory (LSTM)을 활용하였다. 또한, 통합기술수용이론 (UTAUT)을 입각하여 카드 산업에서 휴면 고객을 예측하는데 필요한 변수를 재정의하였다. 그 결과 안정된 모형의 정확도와 F-1 score를 얻을 수 있었으며, Hit-Ratio를 통하여 모형의 안정된 결과를 입증하였다. 기존 연구에서 지적된 통합기술수용이론 (UTAUT)에서 발생 될 수 있는 인구통계학적 정보의 조절 효과도 발생 되지 않은 것을 보였으며, 이로 인해 통합기술수용이론(UTAUT)를 이용한 변수 선정 모형에서 LSTM을 이용한 휴면 고객 예측 모형은 편향되지 않고 안정된 결과를 가져다 줄 수 있다는 것을 입증하였다.

사전 세분화를 통한 고객 분류모형의 효과성 제고에 관한 연구 (Improving the Effectiveness of Customer Classification Models: A Pre-segmentation Approach)

  • 장남식
    • 경영정보학연구
    • /
    • 제7권2호
    • /
    • pp.23-40
    • /
    • 2005
  • 시장에서의 경쟁이 점차 심화되고 서비스나 상품에 대한 고객들의 요구와 기대치가 증가함에 따라 기업들에 있어 과학적인 데이터 분석에 근거한 경영전략 수립 및 실행의 필요성이 어느 때보다 크게 강조되고 있다. 그러나 인적자원과 및 자금 등을 포함한 가용자원은 한정적이기 때문에 이들 자원을 얼마나 효율적으로 사용하여 효과적인 결과를 획득하는가가 기업 성패를 좌우하는 주요 지표가 되고있다. 본 연구에서는 선택과 집중적 자원 배분이라는 이슈에 초점을 맞춰 사전 세분화를 통해 선정된 고객 군만을 대상으로 고객의 특성을 파악하고 관리하는 방안이 전체 고객을 대상으로 하는 것보다 보다 의미가 있다는 것을 실제 현업데이터를 통해 검증하고자 하였다. 이를 위해 카드사, 이동통신사, 보험사의 고객 인적데이터 및 거래데이터를 수집하였고, 통계분석과 현업전문가의 의견을 수렴해 고객 세분화를 수행하였으며, 각 세분 군별로 데이터마이닝의 의사결정나무 기법을 이용해 해지모형을 구축하여 전체 고객을 대상으로 한 모형과 정분류율과 규칙의 간결성 측면에서 비교 평가하였다. 결과적으로 세분 군별 해지모형이 전체 고객대상 모형에 비해 정분류율은 높거나 비슷한 수준을 유지하면서 보다 간결하고 의미있는 규칙을 제공하였다.