• Title/Summary/Keyword: Chungkookjang (CKJ)

Search Result 4, Processing Time 0.026 seconds

Protective Effect of Genistein and Korean Fermented Soybean (Chungkookjang) Extract against Benzo(a)pyrene Induced DNA Damage in HepG2 Cells (Benzo(a)pyrene 유도 DNA 손상에 대한 Genistein과 청국장추출물의 보호효과)

  • Song, Eun-Jeong;Kim, Hyun-Pyo;Heo, Moon-Young
    • YAKHAK HOEJI
    • /
    • v.52 no.5
    • /
    • pp.376-383
    • /
    • 2008
  • Chungkookjang (CKJ) is a fermented soybean product and one of favorite traditional foods in Korea. In this study, the alcoholic extract from Korean fermented soybean (CKJ) and its one of major flavonoids, genistein were evaluated for their protective effect against B(a)P induced cytotoxicity and DNA damage in HepG2 cells. CKJ extract and genistein decreased B(a)P-induced cell cytotoxicity. CKJ extract inhibited DNA single strand breaks evaluated by single cell gel electrophoresis. From RT-PCR study, it was revealed that CKJ extract decrease DNA damage induced in HepG2 cells expressing CYP1A1 and 1A2 by B(a)P. The metabolizing activities of CYP1A1 and CYP1A2, as measured by the 7-alkoxy resorufin O-deethylation (AROD) assay, showed that CKJ extract and genistein inhibited CYP1A1 and CYP1A2 activities. Genistein may contribute to these biological effects of CKJ extract at least in part. All these results indicate that CKJ extract and genistein may be useful for protection against B(a)P-induced cytotoxicity and DNA damage. Therefore, the alcoholic extract of Korean fermented soybean (CKJ) is suggested to be promising functional food which can prevent the cellular genotoxicity of dietary and lifestyle related carcinogens.

Inhibitory Effect of Korean Fermented Soybean (Chungkookjang) Extract and Genistein Against Trp-P-1 Induced Genotoxicity in HepG2 Cells

  • Song, Eun Jeong;Kim, Nam Yee;Heo, Moon Young
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.3
    • /
    • pp.171-178
    • /
    • 2017
  • This study evaluated the protective effect of Chungkookjang (CKJ) extract, a Korean traditional fermented soybean product made from Bacillus species in rice straw and boiled soybean, and one of its main flavonoids, genistein, against Trp-P-1 induced cytotoxicity and DNA damage in HepG2 cells. CKJ and genistein exhibited protective effect against Trp-P-1 induced cytotoxicity and Trp-P-1 induced DNA single strand breaks. CKJ and genistein inhibited Trp-P-1 induced CYP1A1 and CYP1A2 transcription in HepG2 cells. Our results indicated that CKJ and genistein have the protective effect against Trp-P-1 induced cytotoxicity and DNA damage. Via inhibiting expression of CYP1A1 and CYP1A2. CKJ can be used as a promising functional food material that prevents the genotoxicity induced by carcinogens produced by the heat treatment of foods such as heterocyclic amines (HCAs) that cause genomic instability.

Protective Effects of Chungkookjang Extract on High Glucose Induced Oxidative Stress in LLC-PK1 Cells

  • Yi, Na-Ri;Seo, Kyoung-Chun;Choi, Ji-Myung;Cho, Eun-Ju;Song, Young-Ok;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.2
    • /
    • pp.84-89
    • /
    • 2008
  • This study was designed to investigate the protective effect of a methanol extract of Chungkookjang (CKJ) on high glucose induced oxidative stress in LLC-$PK_1$ cells (renal tubular epithelial cells), which are susceptible to oxidative stress. Freeze dried CKJ powder was extracted with methanol, and the extract solution was concentrated, and then used in this study. To determine the protective effect of CKJ extract, oxidative stress was induced by exposing of LLC-$PK_1$ cells to high glucose (30 mM) or normal glucose (5 mM) for 24 hr. Exposure of LLC-$PK_1$ cells to high glucose for 24 hr resulted in a significant (p<0.05) decrease in cell viability, catalase, SOD and GSH-px activity and a significant (p<0.05) increase in intracellular ROS level and thiobarbituric acid reactive substances (TBARS) formation in comparison to the cells treated with 5 mM glucose. CKJ extract treatment decreased intracellular ROS level and TBARS formation, and increased cell viability and activities of antioxidant enzymes including catalase, SOD and GSH-px in high glucose pretreated LLC-$PK_1$ cells. These results suggest that CKJ extract may be able to protect LLC-$PK_1$ cells from high glucose-induced oxidative stress, partially through the antioxidative defense systems.

Effects of Chungkookjang Extract on Growth Hormone Secretion from GH3 Mouse Pituitary Cell and Growth Hormone Receptor Signaling Pathway (GH3 뇌하수체 세포주로부터 성장호르몬의 분비와 성장호르몬 수용체 신호전달에 미치는 청국장 추출물의 효능)

  • Choi, Sun-Il;Kim, Ji-Eun;Hwang, In-Sik;Lee, Hye-Ryun;Lee, Young-Ju;Son, Hong-Joo;Kim, Dong-Seob;Park, Kyu-Min;Hwang, Dae-Youn
    • Journal of Life Science
    • /
    • v.22 no.9
    • /
    • pp.1243-1253
    • /
    • 2012
  • The production and secretion of growth hormone (GH) in the anterior pituitary gland can be induced by several natural products to control cell proliferation, differentiation, and migration. To investigate whether Chungkookjang (CKJ) produced by the fermentation process affects GH-related metabolism, the secretion and the response of GH were observed in pituitary cells and GH target cells. Among six CKJs manufactured by different strains of glycine max, only three CKJs, including Daewon (DW), Daepung (DP), and Taegwang (TG), induced GH secretion from GH3 cells at 5.0 mg/ml concentration. There were no significant changes detected in the viability of any of the cells treated with these CKJs. In addition, the increase in GH secretion from the GH3 cells was dependent on the concentration of the three types of CKJs. The proliferation of cell lines, including MG63 and HepG2 cells, that originated from those derived from the GH target organs was significantly activated by treatment with the GH-containing conditional medium (GCM) harvested from the three CKJ-treated GH3 cells, although their induction rate was different from each other. In these cells, p-STAT5 was maximally translocated into the nucleus of MG63 cells 30 min after DW treatment, while it was translocated in HepG2 cells at 60 min. These results suggest that these three types of CKJ could enhance the secretion of GH, as well as the GCM-derived response, in the two target organs.