• Title/Summary/Keyword: Chromosome mapping

Search Result 169, Processing Time 0.043 seconds

Quantitative Trait Loci Mapping for Porcine Backfat Thickness

  • Wu, X.L.;Lee, C.;Jiang, J.;Peng, Y.L.;Yan, H.F.;Yang, S.L.;Xiao, B.N.;Liu, X.C.;Shi, Q.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.7
    • /
    • pp.932-937
    • /
    • 2002
  • A partial genome scan using porcine microsatellites was carried out to detect quantitative trait loci (QTL) for backfat thickness (BFT) in a pig reference population. This population carried QTL on chromosomes 1, 13 and 18. The QTL on chromosome 1 was located between marker loci S0113 and SW1301. The QTL corresponded to very low density lipoprotein receptor gene (VLDLR) in location and in biological effects, suggesting that VLDLR might be a candidate gene. The QTL found on chromosome 13 was found between marker loci SWR1941 and SW864, but significance for the marker-trait association was inconsistent by using data with different generations. The QTL on chromosome 18 was discovered between markers S0062 and S0117, and it was in proximity of the regions where IGFBP3 and GHRHR were located. The porcine obese gene might be also a candidate gene for the QTL on chromosome 18. In order to understand genetic architecture of BFT better, fine mapping and positional comparative candidate gene analyses are necessary.

Comparative Cytogenetic Characteristics and Physical Mapping of the 17S and 5S Ribosomal DNAs between Atractylodes japonica Koidz. and Atractylodes macrocephala Koidz.

  • Bang, Kyong-Hwan;Koo, Dal-Hoe;Kim, Hong-Sig;Song, Beom-Heon;Cho, Yong-Gu;Cho, Joon-Hyeong;Bang, Jae-Wook
    • Korean Journal of Medicinal Crop Science
    • /
    • v.11 no.4
    • /
    • pp.311-315
    • /
    • 2003
  • This study was carried out to compare chromosomal characteristics between Atractylodes japonica and A macrocephala. Cytogenetic analysis was conducted based on karyotype analysis and physical mapping using fluorescence in situ hybridization. As a result of karyotype analysis by feulgen staining, somatic chromosome numbers of A. japonica and A. macrocephala were 2n=24. The length. of the mitotic metaphase chromosomes of A. japonica ranged from $0.70\;to\;1.60{\mu}m$ with a total length. of $12.11{\mu}m$ and the homologous chromosome complement comprised six metacentrics, five submetacentrics and one subtelocentrics. On the other hand, the length of the mitotic metaphase chromosomes of A. macrocephala ranged from $0.90\;to\;2.35{\mu}m$ with a total length of $16.58{\mu}m$ and the homologous chromosome complement comprised seven metacentrics and five submetacentrics. The total length of A. japonica chromosomes was shorter than that of A. macrocephala, but A. japonica had one subtelocentrics (chromosomes 4) different from A. macrocepha1a. chromosomes. The F1SH technique using 17S and 5S rDNA was applied to metaphase chromosomes. The signals for 17S rDNA were detected on the telomeric regions of chromosomes 4 and 5 in both A japonica and A. macrocephala. The 5S rDNA signal was found in the short arm of chromosome 1.

Karyotype Analysis and rDNA Physical Mapping in Rye (Secale cereale L.) (호밀(Secale cereale L.)의 핵형분석과 rDNA의 Physical Mapping)

  • Lee, Joon Soo;Seo, Bong Bo;Kim, Min
    • Korean Journal of Breeding Science
    • /
    • v.42 no.2
    • /
    • pp.163-168
    • /
    • 2010
  • This study was carried out to determine the chromosomal localization of the 5S and 18S-26S ribosomal DNA(rDNA) genes by means of fluorescence in situ hybridization(FISH) techniques, and the constitutive heterochromatin detected by means of Gimsa C-banding technique in rye(Secale cereale L.). The somatic chromosomes number was 2n=14. The karyotype consists of four pairs of metacentrics(chromosomes 1, 2, 3, and 7) and three pairs of submetacentrics(chromosomes 4, 5, and 6). Secondary constrictions appeared in the short arm of chromosome 1. The 5S rDNA genes have been located on two pairs of chromosomes 1 and 5, and 18S-26S rDNAs genes have been located on one pair of chromosome 1. 5S rDNA genes were detected on the distal region of the secondary constrictions in nucleolus organizer regions(NOR) in chromosome 1, and other detected on the intercalary region in the short arm of chromosome 5.

Human RPS4X/Y Genes and Pseudogene Family: Chromosomal Localization and Phylogenetic Analysis

  • Lee, Ji-Won;Yi, Joo-Mi;Shin, Kyung-Mi;Kim, Heui-Soo
    • Journal of Life Science
    • /
    • v.11 no.2
    • /
    • pp.81-82
    • /
    • 2001
  • The human ribosomal protein 54 genes, RPS4X and RPS4Y are located on the X and Y chromosomes. They have been postulated as candidate for Turner syndrome which was characterized by gonadal dysgenesis, short stature, and various external and internal anomalies. Using the BLAST search program, we identified sixteen RPS4 pseudogenes from the human genome and analyzed them phylogenetically. The RPS4-C12-1, C12-2, and C12-3 pseudogenes from chromosome 12 have been evolved independently during hominid evolution. The RPS4X gene from X chromosome it closely related to the RPS4-C12-2 from chromosome 12 and RPS4-C5 from chromosome 5, whereas the RPS4Y gene is very closely related to RPS4-C16 from chromosome 16. The exact mapping of the RPS4 pseudogene family was peformed, indicating that the RPS4 pseudogene family was mapped on human chromosomes 1, 2, 5, 6, 8, 10, 11, 12, 13, 16, 18, 19 and 20. Taken together, the precise chromosomal localization and phylegenetic relationship of the RPS4 pseudo-genes could be of great use in further study for understanding the Turner syndrome.

  • PDF

TRANSMISSION OF C-BAND VARIANTS IN JAPANESE QUAIL

  • Sohn, S.H.;Fechheimer, N.S.;Nestor, K.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.2
    • /
    • pp.171-174
    • /
    • 1995
  • Heteromorphisms of chromosome banding patterns can be useful markers for gene mapping and other kinds of genetic studies. In Japanese quail, the centromere region of chromosome No. 4 is the site of a heteromorphism. One form of the C-band at this region is relatively small ("a" form); an alternative form is much larger ("b" form). To identify the transmission patterns, all possible matings were made between birds with karyotype a/a, a/b, and b/b. The outcome from all crosses are entirely consistent with the expectation from simple Mendelian transmission. No evidence was found for segregation distortion or gametic selection. This dimorphism, therefore, is a reliable marker.

Characterization of F2 Progenies of Wound Minus Arabidopsis Mutant Crossed with Wild Type Plant

  • Park, Sanggyu
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.1
    • /
    • pp.12-17
    • /
    • 2000
  • To understand the signal transduction pathway that leads to the activation of the wound-inducible proteinase inhibitor II (pin2) promoter. $F_2$ progenies of wound (-) mutant crossed with wild-type Arabidopsis plants were biochemically and genetically characterized. Wound (-) mutant was derived from transgenic Arabidopsis plants containing bacterial cytosine deaminase gene under the control of pin2 promoter. The cytosine deaminase assays indicated that wound (-) mutant is a dominant inhibitor of wound-inducibility as only 3 of the $20F_2$ progenies showed cytosine deaminase (CDase) activity, To construct a structural map of the wound (-) mutant chromosomal regions, cleaved, amplified polymorphic sequences (CAPS) markers that cover all Chromosomes were used. Chromosomal regions covered by three different CAPS markers could be candidates for further fine mapping of the location of the wound (-) mutation. g4026, RGA1 and ASA1 located at 84.9 on recombinant inbred (RI) map of chromosome I, at 1.75 on RI map of chromosome II, and 18.35 on RI map of chromosome V, respectively.

  • PDF

Detection of QTL for Carcass Quality on Chromosome 6 by Exploiting Linkage and Linkage Disequilibrium in Hanwoo

  • Lee, J.H.;Li, Y.;Kim, J.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.1
    • /
    • pp.17-21
    • /
    • 2012
  • The purpose of this study was to improve mapping power and resolution for the QTL influencing carcass quality in Hanwoo, which was previously detected on the bovine chromosome (BTA) 6. A sample of 427 steers were chosen, which were the progeny from 45 Korean proven sires in the Hanwoo Improvement Center, Seosan, Korea. The samples were genotyped with the set of 2,535 SNPs on BTA6 that were imbedded in the Illumina bovine 50 k chip. A linkage disequilibrium variance component mapping (LDVCM) method, which exploited both linkage between sires and their steers and population-wide linkage disequilibrium, was applied to detect QTL for four carcass quality traits. Fifteen QTL were detected at 0.1% comparison-wise level, for which five, three, five, and two QTL were associated with carcass weight (CWT), backfat thickness (BFT), longissimus dorsi muscle area (LMA), and marbling score (Marb), respectively. The number of QTL was greater compared with our previous results, in which twelve QTL for carcass quality were detected on the BTA6 in the same population by applying other linkage disequilibrium mapping approaches. One QTL for LMA was detected on the distal region (110,285,672 to 110,633,096 bp) with the most significant evidence for linkage (p< $10^{-5}$). Another QTL that was detected on the proximal region (33,596,515 to 33,897,434 bp) was pleiotrophic, i.e. influencing CWT, BFT, and LMA. Our results suggest that the LDVCM is a good alternative method for QTL fine-mapping in detection and characterization of QTL.

Identification of the quantitative trait loci (QTL) for seed protein and oil content in soybean.

  • Jeong, Namhee;Park, Soo-Kwon;Ok, Hyun-Choong;Kim, Dool-Yi;Kim, Jae-Hyun;Choi, Man-Soo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.148-148
    • /
    • 2017
  • Soybean is an important economical resource of protein and oil for human and animals. The genetic basis of seed protein and oil content has been separately characterized in soybean. However, the genetic relationship between seed protein and oil content remains to be elucidated. In this study, we used a combined analysis of phenotypic correlation and linkage mapping to dissect the relationship between seed protein and oil content. A $F_{10:11}$ RIL population containing 222 lines, derived from the cross between two Korean soybean cultivars Seadanbaek as female and Neulchan as male parent, were used in this experiment. Soybean seed analyzed were harvested in three different experimental environments. A genetic linkage map was constructed with 180K SoyaSNP Chip and QTLs of both traits were analyzed using the software QTL IciMapping. QTL analyses for seed protein and oil content were conducted by composite interval mapping across a genome wide genetic map. This study detected four major QTL for oil content located in chromosome 10, 13, 15 and 16 that explained 13.2-19.8% of the phenotypic variation. In addition, 3 major QTL for protein content were detected in chromosome 10, 11 and 16 that explained 40.8~53.2% of the phenotypic variation. A major QTLs was found to be associated with both seed protein and oil content. A major QTL were mapped to soybean chromosomes 16, which were designated qHPO16. These loci have not been previously reported. Our results reveal a signi cant genetic relationship between seed protein and oil fi content traits. The markers linked closely to these major QTLs may be used for selection of soybean varieties with improved seed protein and oil content.

  • PDF

Detection of QTL on Bovine X Chromosome by Exploiting Linkage Disequilibrium

  • Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.5
    • /
    • pp.617-623
    • /
    • 2008
  • A fine-mapping method exploiting linkage disequilibrium was used to detect quantitative trait loci (QTL) on the X chromosome affecting milk production, body conformation and productivity traits. The pedigree comprised 22 paternal half-sib families of Black-and-White Holstein bulls in the Netherlands in a grand-daughter design for a total of 955 sons. Twenty-five microsatellite markers were genotyped to construct a linkage map on the chromosome X spanning 170 Haldane cM with an average inter-marker distance of 7.1 cM. A covariance matrix including elements about identical-by-descent probabilities between haplotypes regarding QTL allele effects was incorporated into the animal model, and a restricted maximum-likelihood method was applied for the presence of QTL using the LDVCM program. Significance thresholds were obtained by permuting haplotypes to phenotypes and by using a false discovery rate procedure. Seven QTL responsible for conformation types (teat length, rump width, rear leg set, angularity and fore udder attachment), behavior (temperament) and a mixture of production and health (durable prestation) were detected at the suggestive level. Some QTL affecting teat length, rump width, durable prestation and rear leg set had small numbers of haplotype clusters, which may indicate good classification of alleles for causal genes or markers that are tightly associated with the causal mutation. However, higher maker density is required to better refine the QTL position and to better characterize functionally distinct haplotypes which will provide information to find causal genes for the traits.

De novo interstitial deletion of 15q22q23 with global developmental delay and hypotonia: the first Korean case

  • Kim, Ha-Su;Han, Jin-Yeong;Kim, Myo-Jing
    • Clinical and Experimental Pediatrics
    • /
    • v.58 no.8
    • /
    • pp.313-316
    • /
    • 2015
  • Interstitial deletions involving the chromosome band 15q22q24 are very rare and only nine cases have been previously reported. Here, we report on a 12-day-old patient with a de novo 15q22q23 interstitial deletion. He was born by elective cesarean section with a birth weight of 3,120 g at 41.3-week gestation. He presented with hypotonia, sensory and neural hearing loss, dysmorphism with frontal bossing, flat nasal bridge, microretrognathia with normal palate and uvula, thin upper lip in an inverted V-shape, a midline sacral dimple, severe calcanovalgus at admission, and severe global developmental delay at 18 months of age. Fluorescence in situ hybridization findings confirmed that the deleted regions contained at least 15q22. The chromosome analysis revealed a karyotype of 46,XY,del(15) (q22q23). Parental chromosome analysis was performed and results were normal. After reviewing the limited literature on interstitial 15q deletions, we believe that the presented case is the first description of mapping of an interstitial deletion involving the chromosome 15q22q23 segment in Korea. This report adds to the knowledge of the clinical phenotype associated with the 15q22q23 deletion.