• Title/Summary/Keyword: Chromosomal variation

Search Result 63, Processing Time 0.025 seconds

Replication of the Association between Copy Number Variation on 8p23.1 and Autism by Using ASD-specific BAC Array

  • Woo, Jung-Hoon;Yang, Song-Ju;Yim, Seon-Hee;Hu, Hae-Jin;Shin, Myung-Ju;Oh, Eun-Hee;Kang, Hyun-Woong;Park, Seon-Yang;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • v.8 no.1
    • /
    • pp.19-27
    • /
    • 2010
  • To discover genetic markers for autism spectrum disorder (ASD), we previously applied genome-wide BAC array comparative genomic hybridization (array-CGH) to 28 autistic patients and 62 normal controls in Korean population, and identified that chromosomal losses on 8p23.1 and on 17p11.2 are significantly associated with autism. In this study, we developed an 8.5K ASD-specific BAC array covering 27 previously reported ASD-associated CNV loci including ours and examined whether the associations would be replicated in 8 ASD patient cell lines of four different ethnic groups and 10 Korean normal controls. As a result, a CNV-loss on 8p23.1 was found to be significantly more frequent in patients regardless of ethnicity (p<0.0001). This CNV region contains two coding genes, DEFA1 and DEFA3, which are members of DEFENSIN gene family. Two other CNVs on 17p11.2 and Xp22.31 were also distributed differently between ASDs and controls, but not significant (p=0.069 and 0.092, respectively). All the other loci did not show significant association. When these evidences are considered, the association between ASD and CNV of DEFENSIN gene seems worthy of further exploration to elucidate the pathogenesis of ASD. Validation studies with a larger sample size will be required to verify its biological implication.

Molecular Diversity of pagA Gene from Baciilus anthracis (탄저균 pagA 유전자의 분자적 다양성)

  • 김성주;조기승;최영길;채영규
    • Korean Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.49-55
    • /
    • 2001
  • Bacillus anthracis is a gram-positive spore-forming bacterium that causes the disease anthrax. The anthrax toxin contains three components, including the protective antigen (PA), which binds to eucaryotic cell surface receptors and mediates the transport of toxins into the cell. In this study, the entire 2,294-nucleotide protective antigen gene (pag) was sequenced from 4 of B. anthracis strains to identify potential variation in the toxin and to further our understanding of B. anthracis evolution in Korea. Sequence alignment of the entire PA gene from 30 strains representative of the four B. anthracis diversity groups revealed mutations. The mutation of B. anthracis BAK are located adjacent to a highly antigenic region crossing the junction between PA domains 3 and 4 shown to be critical to LF binding. The different mutational combinations observed in this study give rise to 11 PA genotypes and 4PA phenotypes. Three-dimensional analysis of all the amino acid changes (Ala to Val) observed in BAK indicated that these changes are not only close sequentially but also very close in three-dimensional space to the antigenic region importan tfor LF binding. Phylogenetic (cladistic) analysis of the pag corresponded with previous strain grouping based on chromosomal variation, suggesting that plasmid evolution in B. anthracis has occurred with little or no horizontal transfer between the different strains.

  • PDF

Plant genome analysis using flow cytometry

  • Lee Jai-Heon;Kim Kee-Young;Chung Dae-Soo;Chung Won Bok;Kwon Oh-Chang
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 1999.05a
    • /
    • pp.162-163
    • /
    • 1999
  • The goal of this research was (1) to describe the conditions and parameters required for the cell cycle synchronization and the accumulation of large number of metaphase cells in maize and other cereal root tips, (2) to isolate intact metaphase chromosomes from root tips suitable for characterization by flow cytometry, and (3) to construct chromosome-specific libraries from maize. Plant metaphase chromosomes have been successfully synchronized and isolated from many cereal root-tips. DNA synthesis inhibitor (hydroxyurea) was used to synchronize cell cycle, follwed by treatement with trifluralin to accumulate metaphase chromosomes. Maize flow karyotypes show substantial variation among inbred lines. thish variation should be sueful in isolating individual chromosome types. In addition, flow cytometry is a useful method to measure DNA content of individual chromosomes in a genotyps, and to detect chromosomal variations. Individual chromosome peaks have been sorted from the maize hybrid B73/Mol7. Libraries were generated form the DOP-PCR amplification product from each peak. To date, we have analyzed clones from a library constructed from the maize chromosome 1 peak. Hybridization of labeled genomic DNA to clone inserts indicated that $24\%,\;18\%,\;and\;58\%$ of the clones were highly repetitive, medium repetitive, and low copy, respectively. Fifty percent of putative low cpoy clones showed single bands on inbred screening, blots, and the remaining $50\%$ were low copy repeats. Single copy clones showing polymorphism will be mapped using recombinant inbred mapping populations. Repetitive clones are being characterized by Southern blot analysis, and will be screened by in situ hybridization for their potential utility as chromosome specific markers.

  • PDF

Germination and Seedling Growth in Response to Ionizing Radiation in Creeping Bentgrass (Agrostis palustris Huds.)

  • Lee, Yong Jin;Hong, Min Jeong;Kim, Dae Yeon;Lee, Tong Geon;Kim, Dong Sub;Kim, Jin Baek;Lee, Byung Cheol;Han, Young Hwan;Seo, Yong Weon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.1
    • /
    • pp.15-21
    • /
    • 2008
  • It was previously pointed out that mutation is the ultimate source of variation. Adequate variation is needed for plant breeding if there is a limitation in natural genetic resources. When the ionizing radiation has been known to cause chromosomal and genomic alternations, it is widely used for inducing mutagenesis. The electron beam as an ionizing radiation is the principal physical mutagens that induces mutation and effectively used in plant breeding. Since dose-response relationships of electron beam in plant species are rarely known, we investigated the seed germination rate and early seedling growth of irradiated seeds of creeping bentgrass (Agrostis palustris Huds., cv Penn-A1) with various electron beam irradiating conditions (1, 1.3, 2 MeV at both 0.03 mA and 0.06 mA with dose of 100 Gy (Gray) and 0.03, 1, 1.3, 2 MeV at 0.03 mA with dose of 200 Gy, respectively) using electron accelerator at Korea Atomic Energy Research Institute. The growth parameters in terms of shoot length, primary root length, and secondary root length showed similar response between 0.06 / 1 (mA / MeV) at 100 Gy and 0.03 / 0.3 (mA / MeV) at 200 Gy. Bentgrass seed germination was mainly affected by the intensity of irradiated dose (Gray). Germination rate was lowered as the irradiated dose increased. On the other hand, early seedling growth was mainly governed not by the dose of radiation but by voltage.

QTL Mapping of Genes Related with Grain Chemical Properties Based on Molecular Map of Rice

  • Kang, Hyeon-Jung;Cho, Yong-Gu;Lee, Young-Tae;Kim, Young-Doo;Eun, Moo-Young;Shim, Jae-Uk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.4
    • /
    • pp.199-204
    • /
    • 1998
  • This study was conducted to investigate the chromosomal locations and effects of quantitative trait loci (QTL) associated with chemical properties of rice (Oryza sativa L.). One hundred sixty four recombinant inbred lines (MGRILs) of $F_{11}$ were derived from the cross between Milyang 23, Tongil type, and Gihobyeo, japonica type. They were evaluated for 7 traits of chemical property in rice. Transgressive segregation was observed for all traits examined. Eight significant QTLs were detected (LOD$\geq$2.0) for five traits, including two QTLs for amylose content, two QTLs for potassium content, one QTL for ratio of magnesium to potassium, one QTL for fat content and two QTLs for ash content. Phenotypic variation explained by each QTL ranged from 7.2% to 14.4%. However, no significant QTL was detected for magnesium and protein contents. In amylose content and ash content M alleles originated from Milyang 23 were responsible for increasing these traits and J alleles originated from Gihobyeo also responsible for increasing these traits. Pleiotropic effects of single QTLs on different traits are observed.

  • PDF

Genetic Variation in Growth and Body Dimensions of Jersey and Limousin Cross Cattle. 2. Post-Weaning Dry and Wet Season Performance

  • Afolayan, R.A.;Pitchford, W.S.;Weatherly, A.W.;Bottema, C.D.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.10
    • /
    • pp.1378-1385
    • /
    • 2002
  • The importance of direct genetic, maternal, heterosis and epistatic effects were examined on post-weaning weight, height, length, girth, fat depth and muscle (ratio of stifle to hip width) with dry and wet season gains in these traits. The breeds used were two pure breeds (Jersey and Limousin), the Limousin${\times}$Jersey $F_1$, and two backcrosses ($F_1{\times}$Jersey dams and $F_1{\times}$Limousin dams). Direct genetic effects were large (p<0.001) for all traits except for length. Jersey maternal effects were large for weight, girth, fat depth and muscle in the post-weaning wet season gains which is an evidence of the impact of Jersey dam on progeny beyond weaning. There were large heterosis effects on fat depth and muscle relative to other traits. Epistatic effects were observed for post-weaning performance in weight, girth, fat depth and muscle. There are indications that there were different genetic effects for post-weaning compared to preweaning growth traits. Thus, it could be hypothesized from this study that different quantitative trait loci (QTL) affect early and late growth in Jersey and Limousin cross cattle breeds. The follow up work will examine the different chromosomal gene effects on pre- and post-weaning growth.

Role of Chromosome Changes in Crocodylus Evolution and Diversity

  • Srikulnath, Kornsorn;Thapana, Watcharaporn;Muangmai, Narongrit
    • Genomics & Informatics
    • /
    • v.13 no.4
    • /
    • pp.102-111
    • /
    • 2015
  • The karyotypes of most species of crocodilians were studied using conventional and molecular cytogenetics. These provided an important contribution of chromosomal rearrangements for the evolutionary processes of Crocodylia and Sauropsida (birds and reptiles). The karyotypic features of crocodilians contain small diploid chromosome numbers (30~42), with little interspecific variation of the chromosome arm number (fundamental number) among crocodiles (56~60). This suggested that centric fusion and/or fission events occurred in the lineage, leading to crocodilian evolution and diversity. The chromosome numbers of Alligator, Caiman, Melanosuchus, Paleosuchus, Gavialis, Tomistoma, Mecistops, and Osteolaemus were stable within each genus, whereas those of Crocodylus (crocodylians) varied within the taxa. This agreed with molecular phylogeny that suggested a highly recent radiation of Crocodylus species. Karyotype analysis also suggests the direction of molecular phylogenetic placement among Crocodylus species and their migration from the Indo-Pacific to Africa and The New World. Crocodylus species originated from an ancestor in the Indo-Pacific around 9~16 million years ago (MYA) in the mid-Miocene, with a rapid radiation and dispersion into Africa 8~12 MYA. This was followed by a trans-Atlantic dispersion to the New World between 4~8 MYA in the Pliocene. The chromosomes provided a better understanding of crocodilian evolution and diversity, which will be useful for further study of the genome evolution in Crocodylia.

Evolutionary course of CsRn1 long-terminal-repeat retrotransposon and its heterogeneous integrations into the genome of the liver fluke, Clonorchis sinensis

  • Bae, Young-An;Kong, Yoon
    • Parasites, Hosts and Diseases
    • /
    • v.41 no.4
    • /
    • pp.209-219
    • /
    • 2003
  • The evolutionary course of the CsRn1 long-terminal-repeat (LTR) retrotransposon was predicted by conducting a phylogenetic analysis with its paralog LTR sequences. Based on the clustering patterns in the phylogenetic tree, multiple CsRn1 copies could be grouped into four subsets, which were shown to have different integration times. Their differential sequence divergences and heterogeneous integration patterns strongly suggested that these subsets appeared sequentially in the genome of C. sinensis. Members of recently expanding subset showed the lowest level of divergence in their L TR and reverse transcriptase gene sequences. They were also shown to be highly polymorphic among individual genomes of the trematode. The CsRn1 element exhibited a preference for repetitive, agenic chromosomal regions in terms of selecting integration targets. Our results suggested that CsRn1 might induce a considerable degree of intergenomic variation and, thereby, have influenced the evolution of the C. sinensis genome.

Genomic Variations of Rice Regenerants from Tissue Culture Revealed by Whole Genome Re-Sequencing

  • Qin, Yang;Shin, Kong-Sik;Woo, Hee-Jong;Lim, Myung-Ho
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.426-433
    • /
    • 2018
  • Plant tissue culture is a technique that has invariably been used for various purposes such as obtaining transgenic plants for crop improvement or functional analysis of genes. However, this process can be associated with a variety of genetic and epigenetic instabilities in regenerated plants, termed as somaclonal variation. In this study, we investigated mutation spectrum, chromosomal distributions of nucleotide substitution types of single-nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) by whole genome re-sequencing between Dongjin and Nipponbare along with regenerated plants of Dongjin from different induction periods. Results indicated that molecular spectrum of mutations in regenerated rice against Dongjin genome ranged from $9.14{\times}10^{-5}$ to $1.37{\times}10^{-4}$ during one- to three-month callus inductions, while natural mutation rate between Dongjin and Nipponbare genomes was $6.97{\times}10^{-4}$. Non-random chromosome distribution of SNP and InDel was observed in both regenerants and Dongjin genomes, with the highest densities on chromosome 11. The transition to transversion ratio was 2.25 in common SNPs of regenerants against Dongjin genome with the highest C/T transition frequency, which was similar to that of Dongjin against Nipponbare genome.

Enhancing in vitro Growth of Bulbs for Mass Propagation of Lily Germplasm

  • Song, Jae-young;Lee, Young-yi;Yi, Jung-yoon;Lee, Jung-ro;Yoon, Mun-sup
    • Korean Journal of Plant Resources
    • /
    • v.34 no.1
    • /
    • pp.17-22
    • /
    • 2021
  • Plants regenerated from in vitro cultures carry chromosomal variations, especially in long-term culture. Reducing the duration of plant tissue culture is one of the ways to reduce genetic and epigenetic changes. In this study, we reduced the duration of long-term culture and repeat subculture using small bulblets derived from bulb scales in two lily cultivars. The adventitious bulblets derived from bulb-scale tissue were cultured on three different media containing Murashige and Skoog (MS) basal medium supplemented with 1 g/L Charcoal, MS medium containing 0.3 mg/L IAA and 0.4 mg/L BA hormone with or without Charcoal, respectively. About seven weeks later, the number of newly propagated multiple shoots in the two media, A and B media, showed little differentiation. Compared to both media, the number of propagated multiple shoots increased 5-fold in MS medium containing 0.3 mg/L IAA and 0.4 mg/L BA hormone without Charcoal (C medium). The number of propagated multiple shoots ranged from 5 to 6 and 4 to 6 with an average of 5 in TropicalPink and GreenStar cultivars, respectively. The flow cytometric measurements indicated no variation in the ploidy level between control and in vitro propagated plants.