• Title/Summary/Keyword: Chromatin immunoprecipitation

Search Result 73, Processing Time 0.019 seconds

Transcription Factor E2F7 Hampers the Killing Effect of NK Cells against Colorectal Cancer Cells via Activating RAD18 Transcription

  • Bingdong Jiang;Binghua Yan;Hengjin Yang;He Geng;Peng Li
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.920-929
    • /
    • 2024
  • As a pivotal defensive line against multitudinous malignant tumors, natural killer (NK) cells exist in the tumor microenvironment (TME). RAD18 E3 Ubiquitin Protein Ligase (RAD18) has been reported to foster the malignant progression of multiple cancers, but its effect on NK function has not been mined. Here, the study was designed to mine the mechanism by which RAD18 regulates the killing effect of NK cells on colorectal cancer (CRC) cells. Expression of E2F Transcription Factor 7 (E2F7) and RAD18 in CRC tissues, their correlation, binding sites, and RAD18 enrichment pathway were analyzed by bioinformatics. Expression of E2F7 and RAD18 in cells was assayed by qRT-PCR and western blot. Dual-luciferase assay and chromatin immunoprecipitation (ChIP) assay verified the regulatory relationship between E2F7 and RAD18. CCK-8 assay was utilized to assay cell viability, colony formation assay to detect cell proliferation, lactate dehydrogenase (LDH) test to assay NK cell cytotoxicity, ELISA to assay levels of granulocyte-macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), and immunofluorescence to detect expression of toxic molecules perforin and granzyme B. High expression of RAD18 and E2F7 was found in CRC tissues and cells. Silencing RAD18 could hamper the proliferation of CRC cells, foster viability and cytotoxicity of NK cells, and increase the secretion of GM-CSF, TNF-α, IFN-γ as well as the expression of perforin and granzyme B. Additionally, ChIP and dual-luciferase reporter assay ascertained the binding relationship between RAD18 promoter region and E2F7. E2F7 could activate the transcription of RAD18, and silencing RAD18 reversed the inhibitory effect of E2F7 overexpression on NK cell killing. This work clarified the inhibitory effect of the E2F7/RAD18 axis on NK cell killing in CRC, and proffered a new direction for immunotherapy of CRC in targeted immune microenvironment.

Hypoxia Inducible Factor-1α Directly Regulates Nuclear Clusterin Transcription by Interacting with Hypoxia Response Elements in the Clusterin Promoter

  • Park, Jeongsook;Park, So Yun;Shin, Eunkyung;Lee, Sun Hee;Kim, Yoon Sook;Lee, Dong Hoon;Roh, Gu Seob;Kim, Hyun Joon;Kang, Sang Soo;Cho, Gyeong Jae;Jeong, Bo-Young;Kim, Hwajin;Choi, Wan Sung
    • Molecules and Cells
    • /
    • v.37 no.2
    • /
    • pp.178-186
    • /
    • 2014
  • Differential transcription of the clusterin (CLU) gene yields two CLU isoforms, a nuclear form (nCLU) and a secretory form (sCLU), which play crucial roles in prostate tumorigenesis. Pro-apoptotic nCLU and anti-apoptotic sCLU have opposite effects and are differentially expressed in normal and cancer cells; however, their regulatory mechanisms at the transcriptional level are not yet known. Here, we examined the transcriptional regulation of nCLU in response to hypoxia. We identified three putative hypoxia response elements (HREs) in the human CLU promoter between positions -806 and +51 bp. Using a luciferase reporter, electrophoretic gel mobility shift, and chromatin immunoprecipitation assays, we further showed that hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) bound directly to these sites and activated transcription. Exposure to the hypoxia-mimetic compound $CoCl_2$, incubation under 1% $O_2$ conditions, or overexpression of HIF-$1{\alpha}$ enhanced nCLU expression and induced apoptosis in human prostate cancer PC3M cells. However, LNCaP prostate cancer cells were resistant to hypoxia-induced cell death. Methylation-specific PCR analysis revealed that the CLU promoter in PC3M cells was not methylated; in contrast, the CLU promoter in LNCap cells was methylated. Co-treatment of LNCaP cells with $CoCl_2$ and a demethylating agent promoted apoptotic cell death through the induction of nCLU. We conclude that nCLU expression is regulated by direct binding of HIF-$1{\alpha}$ to HRE sites and is epigenetically controlled by methylation of its promoter region.

Effects of Early Life Stress on the Development of Depression and Epigenetic Mechanisms of p11 Gene (생애 초기 유해 경험이 우울증의 발병과 p11 유전자의 후성유전기전에 미치는 영향)

  • Seo, Mi Kyoung;Choi, Ah Jeong;Lee, Jung Goo;Urm, Sang-Hwa;Park, Sung Woo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.29 no.9
    • /
    • pp.1002-1009
    • /
    • 2019
  • Early life stress (ELS) increases the risk of depression. ELS may be involved in the susceptibility to subsequent stress exposure during adulthood. We investigated whether epigenetic mechanisms of p11 promoter affect the vulnerability to chronic unpredictable stress (CUS) induced by the maternal separation (MS). Mice pups were separated from their dams (3 hr/day from P1-P21). When the pups reached adulthood, we applied CUS (daily for 3 weeks). The levels of hippocampal p11 expression were analyzed by quantitative real-time PCR. The levels of acetylated and methylated histone H3 at p11 promoter were measured by chromatin immunoprecipitation. Depression-like behavior was measured by the forced swimming test (FST). The MS and CUS group exhibited significant decreases in p11 mRNA level and the MS plus CUS group had a greater reduction in this level than the CUS group. The MS plus CUS group also resulted in greater reduction in H3 acetylation than the CUS group. This reduction was associated with an upregulation of histone deacetylase 5. Additionally, the MS plus CUS group showed a greater decrease in H3K4met3 level and a greater increase in H3K27 met3 level than the CUS group. Consistent with the reduction of p11 expression, the MS plus CUS group displayed longer immobility times in the FST compared to the control group. Mice exposed to MS followed by CUS had much greater epigenetic alterations in the hippocampus compared to adult mice that only experienced CUS. ELS can exacerbate the effect of stress exposure during adulthood through histone modification of p11 gene.