• Title/Summary/Keyword: Chromatin immunoprecipitation

Search Result 73, Processing Time 0.026 seconds

Genetic disruption of ATAT1 causes RhoA downregulation through abnormal truncation of C/EBPβ

  • Jee-Hye Choi;Jangho Jeong;Jaegu Kim;Eunae You;Seula Keum;Seongeun Song;Ye Eun Hwang;Minjoo Ji;Kwon-Sik Park;Sangmyung Rhee
    • BMB Reports
    • /
    • v.57 no.6
    • /
    • pp.293-298
    • /
    • 2024
  • Microtubule acetylation has been shown to regulate actin filament dynamics by modulating signaling pathways that control actin organization, although the precise mechanisms remain unknown. In this study, we found that the downregulation of microtubule acetylation via the disruption ATAT1 (which encodes α-tubulin N-acetyltransferase 1) inhibited the expression of RhoA, a small GTPase involved in regulating the organization of actin filaments and the formation of stress fibers. Analysis of RHOA promoter and chromatin immunoprecipitation assays revealed that C/EBPβ is a major regulator of RHOA expression. Interestingly, the majority of C/EBPβ in ATAT1 knockout (KO) cells was found in the nucleus as a 27-kDa fragment (referred to as C/EBPβp27) lacking the N-terminus of C/EBPβ. Overexpression of a gene encoding a C/EBPβp27-mimicking protein via an N-terminal deletion in C/EBPβ led to competitive binding with wild-type C/EBPβ at the C/EBPβ binding site in the RHOA promoter, resulting in a significant decrease of RHOA expression. We also found that cathepsin L (CTSL), which is overexpressed in ATAT1 KO cells, is responsible for C/EBPβp27 formation in the nucleus. Treatment with a CTSL inhibitor led to the restoration of RHOA expression by downregulation of C/EBPβp27 and the invasive ability of ATAT1 KO MDA-MB-231 breast cancer cells. Collectively, our findings suggest that the downregulation of microtubule acetylation associated with ATAT1 deficiency suppresses RHOA expression by forming C/EBPβp27 in the nucleus through CTSL. We propose that CTSL and C/EBPβp27 may represent a novel therapeutic target for breast cancer treatment.

Epigenetic regulation of key gene of PCK1 by enhancer and super-enhancer in the pathogenesis of fatty liver hemorrhagic syndrome

  • Yi Wang;Shuwen Chen;Min Xue;Jinhu Ma;Xinrui Yi;Xinyu Li;Xuejin Lu;Meizi Zhu;Jin Peng;Yunshu Tang;Yaling Zhu
    • Animal Bioscience
    • /
    • v.37 no.8
    • /
    • pp.1317-1332
    • /
    • 2024
  • Objective: Rare study of the non-coding and regulatory regions of the genome limits our ability to decode the mechanisms of fatty liver hemorrhage syndrome (FLHS) in chickens. Methods: Herein, we constructed the high-fat diet-induced FLHS chicken model to investigate the genome-wide active enhancers and transcriptome by H3K27ac target chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-Seq) profiles of normal and FLHS liver tissues. Concurrently, an integrative analysis combining ChIP-seq with RNA-Seq and a comparative analysis with chicken FLHS, rat non-alcoholic fatty liver disease (NAFLD) and human NAFLD at the transcriptome level revealed the enhancer and super enhancer target genes and conservative genes involved in metabolic processes. Results: In total, 56 and 199 peak-genes were identified in upregulated peak-genes positively regulated by H3K27ac (Cor (peak-gene correlation) ≥0.5 and log2(FoldChange) ≥1) (PP) and downregulated peak-genes positively regulated by H3K27ac (Cor (peak-gene correlation) ≥0.5 and log2(FoldChange)≤-1) (PN), respectively; then we screened key regulatory targets mainly distributing in lipid metabolism (PCK1, APOA4, APOA1, INHBE) and apoptosis (KIT, NTRK2) together with MAPK and PPAR signaling pathway in FLHS. Intriguingly, PCK1 was also significantly covered in up-regulated super-enhancers (SEs), which further implied the vital role of PCK1 during the development of FLHS. Conclusion: Together, our studies have identified potential therapeutic biomarkers of PCK1 and elucidated novel insights into the pathogenesis of FLHS, especially for the epigenetic perspective.

A New Sterol Regulatory Element Binding Protein, SrbB Is Critical for Hypoxia Adaptation and Virulence in the Human Fungal Pathogen Aspergillus fumigatus

  • Chung, Dawoon;Barker, Bridget M.;Carey, Charles C.;Merriman, Brittney;Werner, Ernst R.;Lechner, Beatrix E.;Dhingra, Sourabh;Cheng, Chao;Xu, Wenjie;Blosser, Sara J.;Morohashi, Kengo;Mazurie, Aurelien;Mitchell, Thomas K.;Haas, Hubertus;Mitchell, Aaron P.;Cramer, Robert A.
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.15-15
    • /
    • 2015
  • Aspergillus fumigatus is a major cause of invasive aspergillosis (IA), a significant health issue worldwide with high mortality rates up to 95%. Our lab is interested in how A. fumigatus adapts to low oxygen conditions 'hypoxia', which is one of the important host microenvironments. A. fumigatus SrbA is a basic helix-loop-helix (bHLH) transcriptional regulator and belongs to sterol regulatory element binding protein (SREBP) family members. Loss of SrbA completely blocks growth in hypoxia and results in avirulence in murine models of IA suggesting an essential role of SrbA in hypoxia adaptation and virulence in A. fumigatus. We conducted chromatin immunoprecipitation sequencing (ChIP-seq) with A. fumigatus wild type using a SrbA specific antibody, and 97 genes were revealed as SrbA direct targets. One of the 'SrbA regulons' (AFUB_099590) was a putative bHLH transcriptional regulator whose sequence contained a characteristic tyrosine substitution in the basic portion of the bHLH domain of SREBPs. Therefore, we designated AFUB_099590 SrbB. Further characterization of SrbB demonstrated that SrbB is important for radial growth, biomass production, and biosynthesis of heme intermediates in hypoxia and virulence in A. fumigatus. A series of quantitative real time PCR showed that transcription of several SrbA regulons is coordinately regulated by two SREBPs, SrbA and SrbB in hypoxia. This suggests that SrbA and SrbB have both dependent and independent functions in regulation of genes responsible for hypoxia adaptation in A. fumigatus. Together, our data provide new insights into complicated roles of SREBPs in adaptation of host environments and virulence in pathogenic fungi.

  • PDF

Mutant p53-Notch1 Signaling Axis Is Involved in Curcumin-Induced Apoptosis of Breast Cancer Cells

  • Bae, Yun-Hee;Ryu, Jong Hyo;Park, Hyun-Joo;Kim, Kwang Rok;Wee, Hee-Jun;Lee, Ok-Hee;Jang, Hye-Ock;Bae, Moon-Kyoung;Kim, Kyu-Won;Bae, Soo-Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.4
    • /
    • pp.291-297
    • /
    • 2013
  • Notch1 has been reported to be highly expressed in triple-negative and other subtypes of breast cancer. Mutant p53 (R280K) is overexpressed in MDA-MB-231 triple-negative human breast cancer cells. The present study aimed to determine whether the mutant p53 can be a potent transcriptional activator of the Notch1 in MDA-MB-231 cells, and explore the role of this mutant p53-Notch1 axis in curcumin-induced apoptosis. We found that curcumin treatment resulted in an induction of apoptosis in MDA-MB-231 cells, together with downregulation of Notch1 and its downstream target, Hes1. This reduction in Notch1 expression was determined to be due to the decreased activity of endogenous mutant p53. We confirmed the suppressive effect of curcumin on Notch1 transcription by performing a Notch1 promoter-driven reporter assay and identified a putative p53-binding site in the Notch1 promoter by EMSA and chromatin immunoprecipitation analysis. Overexpression of mutant p53 increased Notch1 promoter activity, whereas knockdown of mutant p53 by small interfering RNA suppressed Notch1 expression, leading to the induction of cellular apoptosis. Moreover, curcumin-induced apoptosis was further enhanced by the knockdown of Notch1 or mutant p53, but it was decreased by the overexpression of active Notch1. Taken together, our results demonstrate, for the first time, that Notch1 is a transcriptional target of mutant p53 in breast cancer cells and suggest that the targeting of mutant p53 and/or Notch1 may be combined with a chemotherapeutic strategy to improve the response of breast cancer cells to curcumin.

Roc10, a Rice HD-Zip transcription factor gene, modulates lignin biosynthesis for drought tolerance

  • Bang, Seung Woon;Lee, Dong-Keun;Jung, Harin;Chung, Pil Joong;Kim, Youn Shic;Choi, Yang Do;Suh, Joo-Won;Kim, Ju-Kon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.159-159
    • /
    • 2017
  • Drought, a common environmental constraint, induces a range of physiological, biochemical and molecular changes in plants, and can cause severe reductions in crop yield. Consequently, understanding the molecular mechanisms of drought tolerance is an important step towards crop biotechnology. Here, we report that the rice (Oryza sativa) homeodomain-leucine zipper class IV transcription factor gene, ${\underline{R}ice}$ ${\underline{o}utermost}$ ${\underline{c}ell-specific}$ gene 10 (Roc10), enhances drought tolerance and grain yield by increasing lignin accumulation in ground tissues. Overexpression of Roc10 in rice significantly increased drought tolerance at the vegetative stages of growth and promoted both more effective photosynthesis and a reduction in water loss rate, compared with non-transgenic controls or RNAi transgenic plants. Importantly, Roc10 overexpressing plants had a higher drought tolerance at the reproductive stage of growth and a higher grain yield compared with the controls under field-drought conditions. Roc10 is mainly expressed in outer cell layers including the epidermis and the vasculature of the shoots, which coincides with areas of cell wall lignification. Roc10 overexpression elevated the expression levels of lignin biosynthetic genes in shoots, with a concomitant increase in the accumulation of lignin, while the overexpression and RNAi lines showed opposite patterns of lignin accumulation. We identified downstream target genes of Roc10 by performing RNA-seq and chromatin immunoprecipitation (ChIP)-seq analyses of shoot tissues. Roc10 was found to directly bind to the promoter of PEROXIDASEN/PEROXIDASE38, a key gene in lignin biosynthesis. Together, our findings suggest that Roc10 confers drought stress tolerance by promoting lignin biosynthesis in ground tissues.

  • PDF

Effects of Atomoxetine on Hyper-Locomotive Activity of the Prenatally Valproate-Exposed Rat Offspring

  • Choi, Chang Soon;Hong, Minha;Kim, Ki Chan;Kim, Ji-Woon;Yang, Sung Min;Seung, Hana;Ko, Mee Jung;Choi, Dong-Hee;You, Jueng Soo;Shin, Chan Young;Bahn, Geon Ho
    • Biomolecules & Therapeutics
    • /
    • v.22 no.5
    • /
    • pp.406-413
    • /
    • 2014
  • to valproic acid (VPA) during pregnancy produces ASD-like core behavioral phenotypes as well as hyperactivity in offspring both in human and experimental animals, which makes it a plausible model to study ASD-related neurobiological processes. In this study, we examined the effects of two of currently available attention defecit hyperactivity disorder (ADHD) medications, methylphenidate (MPH) and atomoxetine (ATX) targeting dopamine and norepinephrine transporters (DAT and NET), respectively, on hyperactive behavior of prenatally VPA-exposed rat offspring. In the prefrontal cortex of VPA exposed rat offspring, both mRNA and protein expression of DAT was increased as compared with control. VPA function as a histone deacetylase inhibitor (HDACi) and chromatin immunoprecipitation experiments demonstrated that the acetylation of histone bound to DAT gene promoter was increased in VPA-exposed rat offspring suggesting epigenetic mechanism of DAT regulation. Similarly, the expression of NET was increased, possibly via increased histone acetylation in prefrontal cortex of VPA-exposed rat offspring. When we treated the VPA-exposed rat offspring with ATX, a NET selective inhibitor, hyperactivity was reversed to control level. In contrast, MPH that inhibits both DAT and NET, did not produce inhibitory effects against hyperactivity. The results suggest that NET abnormalities may underlie the hyperactive phenotype in VPA animal model of ASD. Profiling the pharmacological responsiveness as well as investigating underlying mechanism in multiple models of ASD and ADHD may provide more insights into the neurobiological correlates regulating the behavioral abnormalities.

EZH2-Mediated microRNA-139-5p Regulates Epithelial-Mesenchymal Transition and Lymph Node Metastasis of Pancreatic Cancer

  • Ma, Jin;Zhang, Jun;Weng, Yuan-Chi;Wang, Jian-Cheng
    • Molecules and Cells
    • /
    • v.41 no.9
    • /
    • pp.868-880
    • /
    • 2018
  • Pancreatic cancer (PC) is one of the most aggressive cancers presenting with high rates of invasion and metastasis, and unfavorable prognoses. The current study aims to investigate whether EZH2/miR-139-5p axis affects epithelial-mesenchymal transition (EMT) and lymph node metastasis (LNM) in PC, and the mechanism how EZH2 regulates miR-139-5p. Human PC and adjacent normal tissues were collected to determine expression of EZH2 and miR-139-5p, and their relationship with clinicopathological features of PC. Human PC cell line was selected, and treated with miR-139-5p mimics/inhibitors, EZH2 vector or shEZH2 in order to validate the regulation of EZH2-mediated miR-139-5p in PC cells. Dual-luciferase report gene assay and chromatin immunoprecipitation assay were employed to identify the relationship between miR-139-5p and EZH2. RT-qPCR and Western blot analysis were conducted to determine the expression of miR-139-5p, EZH2 and EMT-related markers and ZEB1/2. Tumor formation ability and in vitro cell activity were also analyzed. Highly-expressed EZH2 and poorly-expressed miR-139-5p were detected in PC tissues, and miR-139-5p and EZH2 expressions were associated with patients at Stage III/IV, with LNM and highly-differentiated tumors. EZH2 suppressed the expression of miR-139-5p through up-regulating Histone 3 Lysine 27 Trimethylation (H3K27me3). EMT, cell proliferation, migration and invasion were impeded, and tumor formation and LNM were reduced in PC cells transfected with miR-139-5p mimics and shEZH2. MiR-139-5p transcription is inhibited by EZH2 through up-regulating H3K27me3, thereby down-regulation of EZH2 and up-regulation of miR-139-5p impede EMT and LNM in PC. In addition, the EZH2/miR-139-5p axis presents as a promising therapeutic strategy for the treatment of PC.

Hepatitis C Virus Nonstructural 5A Protein (HCV-NS5A) Inhibits Hepatocyte Apoptosis through the NF-κb/miR-503/bcl-2 Pathway

  • Xie, Zhengyuan;Xiao, Zhihua;Wang, Fenfen
    • Molecules and Cells
    • /
    • v.40 no.3
    • /
    • pp.202-210
    • /
    • 2017
  • The nonstructural protein 5A (NS5A) encoded by the human hepatitis C virus (HCV) RNA genome is a multifunctional phosphoprotein. To analyse the influence of NS5A on apoptosis, we established an Hep-NS5A cell line (HepG2 cells that stably express NS5A) and induced apoptosis using tumour necrosis factor $(TNF)-{\alpha}$. We utilised the MTT assay to detect cell viability, real-time quantitative polymerase chain reaction and Western blot to analyse gene and protein expression, and a luciferase reporter gene experiment to investigate the targeted regulatory relationship. Chromatin immunoprecipitation was used to identify the combination of $NF-{\kappa}B$ and miR-503. We found that overexpression of NS5A inhibited $TNF-{\alpha}$-induced hepatocellular apoptosis via regulating miR-503 expression. The cell viability of the $TNF-{\alpha}$ induced Hep-mock cells was significantly less than the viability of the $TNF-{\alpha}$ induced Hep-NS5A cells, which demonstrates that NS5A inhibited $TNF-{\alpha}$-induced HepG2 cell apoptosis. Under $TNF-{\alpha}$ treatment, miR-503 expression was decreased and cell viability and B-cell lymphoma 2 (bcl-2) expression were increased in the Hep-NS5A cells. Moreover, the luciferase reporter gene experiment verified that bcl-2 was a direct target of miR-503, NS5A inhibited $TNF{\alpha}$-induced $NF-{\kappa}B$ activation and $NF-{\kappa}B$ regulated miR-503 transcription by combining with the miR-503 promoter. After the Hep-NS5A cells were transfected with miR-503 mimics, the data indicated that the mimics could reverse $TNF-{\alpha}$-induced cell apoptosis and blc-2 expression. Collectively, our findings suggest a possible molecular mechanism that may contribute to HCV treatment in which NS5A inhibits $NF-{\kappa}B$ activation to decrease miR-503 expression and increase bcl-2 expression, which leads to a decrease in hepatocellular apoptosis.

UHRF1 Induces Methylation of the TXNIP Promoter and Down-Regulates Gene Expression in Cervical Cancer

  • Kim, Min Jun;Lee, Han Ju;Choi, Mee Young;Kang, Sang Soo;Kim, Yoon Sook;Shin, Jeong Kyu;Choi, Wan Sung
    • Molecules and Cells
    • /
    • v.44 no.3
    • /
    • pp.146-159
    • /
    • 2021
  • DNA methylation, and consequent down-regulation, of tumour suppressor genes occurs in response to epigenetic stimuli during cancer development. Similarly, human oncoviruses, including human papillomavirus (HPV), up-regulate and augment DNA methyltransferase (DNMT) and histone deacetylase (HDAC) activities, thereby decreasing tumour suppressor genes (TSGs) expression. Ubiquitin-like containing PHD and RING finger domain 1 (UHRF1), an epigenetic regulator of DNA methylation, is overexpressed in HPV-induced cervical cancers. Here, we investigated the role of UHRF1 in cervical cancer by knocking down its expression in HeLa cells using lentiviral-encoded short hairpin (sh)RNA and performing cDNA microarrays. We detected significantly elevated expression of thioredoxin-interacting protein (TXNIP), a known TSG, in UHRF1-knockdown cells, and this gene is hypermethylated in cervical cancer tissue and cell lines, as indicated by whole-genome methylation analysis. Up-regulation of UHRF1 and decreased TXNIP were further detected in cervical cancer by western blot and immunohistochemistry and confirmed by Oncomine database analysis. Using chromatin immunoprecipitation, we identified the inverted CCAAT domain-containing UHRF1-binding site in the TXNIP promoter and demonstrated UHRF1 knockdown decreases UHRF1 promoter binding and enhances TXNIP expression through demethylation of this region. TXNIP promoter CpG methylation was further confirmed in cervical cancer tissue by pyrosequencing and methylation-specific polymerase chain reaction. Critically, down-regulation of UHRF1 by siRNA or UHRF1 antagonist (thymoquinone) induces cell cycle arrest and apoptosis, and ubiquitin-specific protease 7 (USP7), which stabilises and promotes UHRF1 function, is increased by HPV viral protein E6/E7 overexpression. These results indicate HPV might induce carcinogenesis through UHRF1-mediated TXNIP promoter methylation, thus suggesting a possible link between CpG methylation and cervical cancer.

miR-380-3p promotes β-casein expression by targeting αS1-casein in goat mammary epithelial cells

  • Ning Song;Jun Luo;Lian Huang;Xiaoying Chen;Huimin Niu;Lu Zhu
    • Animal Bioscience
    • /
    • v.36 no.10
    • /
    • pp.1488-1498
    • /
    • 2023
  • Objective: αS1-Casein is more closely associated with milk allergic reaction than other milk protein components. microRNA (miRNA) is a class of small non-coding RNAs that modulate multiple biological progresses by the target gene. However, the post-transcriptional regulation of αS1-casein expression by miRNA in ruminants remains unclear. This study aims to explore the regulatory roles of miR-380-3p on αS1-casein synthesis in goat mammary epithelial cells (GMEC). Methods: αS1-Casein gene and miR-380-3p expression was measured in dairy goat mammary gland by quantitative real-time polymerase chain reaction (qRT-PCR). miR-380-3p overexpression and knockdown were performed by miR-380-3p mimic or inhibitor in GMEC. The effect of miR-380-3p on αS1-casein synthesis was detected by qRT-PCR, western blot, luciferase and chromatin immunoprecipitation assays in GMEC. Results: Compared with middle-lactation period, αS1-casein gene expression is increased, while miR-380-3p expression is decreased during peak-lactation of dairy goats. miR-380-3p reduces αS1-casein abundance by targeting the 3'-untranslated region (3'UTR) of αS1-casein mRNA in GMEC. miR-380-3p enhances β-casein expression and signal transducer and activator of transcription 5a (STAT5a) activity. Moreover, miR-380-3p promotes β-casein abundance through target gene αS1-casein, and activates β-casein transcription by enhancing the binding of STAT5 to β-casein gene promoter region. Conclusion: miR-380-3p decreases αS1-casein expression and increases β-casein expression by targeting αS1-casein in GMEC, which supplies a novel strategy for reducing milk allergic potential and building up milk quality in ruminants.