• Title/Summary/Keyword: Chongqing

Search Result 671, Processing Time 0.023 seconds

Moment-rotational analysis of soil during mining induced ground movements by hybrid machine learning assisted quantification models of ELM-SVM

  • Dai, Bibo;Xu, Zhijun;Zeng, Jie;Zandi, Yousef;Rahimi, Abouzar;Pourkhorshidi, Sara;Khadimallah, Mohamed Amine;Zhao, Xingdong;El-Arab, Islam Ezz
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.831-850
    • /
    • 2021
  • Surface subsidence caused by mining subsidence has an impact on neighboring structures and utilities. In other words, subsurface voids created by mining or tunneling activities induce soil movement, exposing buildings to physical and/or functional destruction. Soil-structure is evaluated employing probability distribution laws to account for their uncertainty and complexity to estimate structural vulnerability. In this study, to investigate the displacement field and surface settlement profile caused by mining subsidence, on the basis of a Winklersoil model, analytical equations for the moment-rotation response ofsoil during mining induced ground movements are developed. To define the full static moment-rotation response, an equation for the uplift-yield state is constructed and integrated with equations for the uplift- and yield-only conditions. The constructed model's findings reveal that the inverse of the factor of safety (x) has a considerable influence on the moment-rotation curve. The maximal moment-rotation response of the footing is defined by X = 0:6. Despite the use of Winkler model, the computed moment-rotation response results derived from the literature were analyzed through the ELM-SVM hybrid of Extreme Learning Machine (ELM) and Support Vector Machine (SVM). Also, Monte Carlo simulations are used to apply continuous random parameters to assess the transmission of ground motions to structures. Following the findings of RMSE and R2, the results show that the choice of probabilistic laws of input parameters has a substantial impact on the outcome of analysis performed.

Research on no coal pillar protection technology in a double lane with pre-set isolation wall

  • Liu, Hui;Li, Xuelong;Gao Xin;Long, Kun;Chen, Peng
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.537-550
    • /
    • 2021
  • There are various technical problems need to be solved in the construction process of pre-setting an isolation wall into a double lane in the outburst prone mine. This study presents a methodology that pre-setting an isolation wall into a double lane without a coal pillar. This requires the excavation of two small section roadways to dig a wide section roadway, followed by construction of the separation wall. During this process the connecting lane is reserved. In order to ensure the stability of the separation wall, the required bearing capacity of the isolation wall is 4.66 MN/m and the deformation of the isolation wall is approximately 25 cm. To reduce the difficulty of implementing support the roadway is driven by 5 m/d. After the construction of the separation wall, the left side coal wall is brushed 1.5 m to make the width of the gas roadway reach 2.5 m and the roadway support utilizes anchor rod, ladder beam, anchor cable beam and net configuration. During construction, the concrete pump and removable self-propelled hydraulic wall mold are used to pump and pour the concrete of the isolation wall. In the process of mining, the stress distribution of coal body and isolation wall is detected and measured on site. The results demonstrate that the deformation of the surrounding rock of roadway and separation of roof in the roadway is small. The stress of the bolt and anchor cable is within equipment tolerance validating their selection. The roadway is well supported and the intended goal is achieved. The methodology can be used for reference for similar mine gas control.

Effects of mining activities on Nano-soil management using artificial intelligence models of ANN and ELM

  • Liu, Qi;Peng, Kang;Zeng, Jie;Marzouki, Riadh;Majdi, Ali;Jan, Amin;Salameh, Anas A.;Assilzadeh, Hamid
    • Advances in nano research
    • /
    • v.12 no.6
    • /
    • pp.549-566
    • /
    • 2022
  • Mining of ore minerals (sfalerite, cinnabar, and chalcopyrite) from the old mine has led in significant environmental effects as contamination of soils and plants and acidification of water. Also, nanoparticles (NP) have obtained global importance because of their widespread usage in daily life, unique properties, and rapid development in the field of nanotechnology. Regarding their usage in various fields, it is suggested that soil is the final environmental sink for NPs. Nanoparticles with excessive reactivity and deliverability may be carried out as amendments to enhance soil quality, mitigate soil contaminations, make certain secure land-software of the traditional change substances and enhance soil erosion control. Meanwhile, there's no record on the usage of Nano superior substances for mine soil reclamation. In this study, five soil specimens have been tested at 4 sites inside the region of mine (<100 m) to study zeolites, and iron sulfide nanoparticles. Also, through using Artificial Neural Network (ANN) and Extreme Learning Machine (ELM), this study has tried to appropriately estimate the mechanical properties of soil under the effect of these Nano particles. Considering the RMSE and R2 values, Zeolite Nano materials could enhance the mine soil fine through increasing the clay-silt fractions, increasing the water holding capacity, removing toxins and improving nutrient levels. Also, adding iron sulfide minerals to the soils would possibly exacerbate the soil acidity problems at a mining site.

A LightGBM and XGBoost Learning Method for Postoperative Critical Illness Key Indicators Analysis

  • Lei Han;Yiziting Zhu;Yuwen Chen;Guoqiong Huang;Bin Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2016-2029
    • /
    • 2023
  • Accurate prediction of critical illness is significant for ensuring the lives and health of patients. The selection of indicators affects the real-time capability and accuracy of the prediction for critical illness. However, the diversity and complexity of these indicators make it difficult to find potential connections between them and critical illnesses. For the first time, this study proposes an indicator analysis model to extract key indicators from the preoperative and intraoperative clinical indicators and laboratory results of critical illnesses. In this study, preoperative and intraoperative data of heart failure and respiratory failure are used to verify the model. The proposed model processes the datum and extracts key indicators through four parts. To test the effectiveness of the proposed model, the key indicators are used to predict the two critical illnesses. The classifiers used in the prediction are light gradient boosting machine (LightGBM) and eXtreme Gradient Boosting (XGBoost). The predictive performance using key indicators is better than that using all indicators. In the prediction of heart failure, LightGBM and XGBoost have sensitivities of 0.889 and 0.892, and specificities of 0.939 and 0.937, respectively. For respiratory failure, LightGBM and XGBoost have sensitivities of 0.709 and 0.689, and specificity of 0.936 and 0.940, respectively. The proposed model can effectively analyze the correlation between indicators and postoperative critical illness. The analytical results make it possible to find the key indicators for postoperative critical illnesses. This model is meaningful to assist doctors in extracting key indicators in time and improving the reliability and efficiency of prediction.

Synthesis and application of zirconium phosphate mesoporous coordination polymer for effective removal of Co(II) from aqueous solutions

  • Yang Zeng;Guoyuan Yuan;Tu Lan;Feize Li;Jijun Yang;Jiali Liao;Yuanyou Yang;Ning Liu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4013-4021
    • /
    • 2022
  • A kind of zirconium phosphate mesoporous coordination polymer Zr-EDTMPA was successfully synthesized and characterized using XRD, FTIR, TGA, EA, SEM-EDS, and N2 sorption-desorption measurements. The prepared Zr-EDTMPA was first employed for the removal of Co(II) from an aqueous solution, and the effects of pH, contact time, temperature, initial Co(II) concentration, reusability, and sorption mechanism were systematically investigated. The results showed that the Zr-EDTMPA is a zirconium phosphate complex formed by the coordination of EDTMPA to Zr in a molar ratio of 1:1. The sorption of Co(II) by Zr-EDTMPA was a pH-dependent, spontaneous and endothermic process, which was better fitted to the pseudo-second-order kinetic model and Langmuir isotherm model. The Zr-EDTMPA was demonstrated to have excellent reusability and presented a high sorption capacity of 73.0 mg·g-1 for Co(II) at pH 8.0. The sorption mechanism was mainly attributed to the strong coordination between cobalt and the untapped hydroxyl functional groups on Zr-EDTMPA, which was confirmed by XPS spectra. Therefore, as a candidate sorbent with high sorption capacity and excellent reusability, Zr-EDTMPA has a great potential for the removal of Co(II) from aqueous solutions.

Ginsenoside Rg1 ameliorates Alzheimer's disease pathology via restoring mitophagy

  • Ni Wang;Junyan Yang;Ruijun Chen;Yunyun Liu;Shunjie Liu;Yining Pan;Qingfeng Lei;Yuzhou Wang;Lu He;Youqiang Song;Zhong Li
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.448-457
    • /
    • 2023
  • Background: Alzheimer's disease (AD) is a common form of dementia, and impaired mitophagy is a hallmark of AD. Mitophagy is mitochondrial-specific autophagy. Ginsenosides from Ginseng involve in autophagy in cancer. Ginsenoside Rg1 (Rg1 hereafter), a single compound of Ginseng, has neuroprotective effects on AD. However, few studies have reported whether Rg1 can ameliorate AD pathology by regulating mitophagy. Methods: Human SH-SY5Y cell and a 5XFAD mouse model were used to investigate the effects of Rg1. Rg1 (1µM) was added to β-amyloid oligomer (AβO)-induced or APPswe-overexpressed cell models for 24 hours. 5XFAD mouse models were intraperitoneally injected with Rg1 (10 mg/kg/d) for 30 days. Expression levels of mitophagy-related markers were analyzed by western blot and immunofluorescent staining. Cognitive function was assessed by Morris water maze. Mitophagic events were observed using transmission electron microscopy, western blot, and immunofluorescent staining from mouse hippocampus. The activation of the PINK1/Parkin pathway was examined using an immunoprecipitation assay. Results: Rg1 could restore mitophagy and ameliorate memory deficits in the AD cellular and/or mouse model through the PINK1-Parkin pathway. Moreover, Rg1 might induce microglial phagocytosis to reduce β-amyloid (Aβ) deposits in the hippocampus of AD mice. Conclusion: Our studies demonstrate the neuroprotective mechanism of ginsenoside Rg1 in AD models. Rg1 induces PINK-Parkin mediated mitophagy and ameliorates memory deficits in 5XFAD mouse models.

Ductility demands of steel frames equipped with self-centring fuses under near-fault earthquake motions considering multiple yielding stages

  • Lu Deng;Min Zhu;Michael C.H. Yam;Ke Ke;Zhongfa Zhou;Zhonghua Liu
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.589-605
    • /
    • 2023
  • This paper investigates the ductility demands of steel frames equipped with self-centring fuses under near-fault earthquake motions considering multiple yielding stages. The study is commenced by verifying a trilinear self-centring hysteretic model accounting for multiple yielding stages of steel frames equipped with self-centring fuses. Then, the seismic response of single-degree-of-freedom (SDOF) systems following the validated trilinear self-centring hysteretic law is examined by a parametric study using a near-fault earthquake ground motion database composed of 200 earthquake records as input excitations. Based on a statistical investigation of more than fifty-two (52) million inelastic spectral analyses, the effect of the post-yield stiffness ratios, energy dissipation coefficient and yielding displacement ratio on the mean ductility demand of the system is examined in detail. The analysis results indicate that the increase of post-yield stiffness ratios, energy dissipation coefficient and yielding displacement ratio reduces the ductility demands of the self-centring oscillators responding in multiple yielding stages. A set of empirical expressions for quantifying the ductility demands of trilinear self-centring hysteretic oscillators are developed using nonlinear regression analysis of the analysis result database. The proposed regression model may offer a practical tool for designers to estimate the ductility demand of a low-to-medium rise self-centring steel frame equipped with self-centring fuses progressing in the ultimate stage under near-fault earthquake motions in design and evaluation.

A re-examination of the current design rule for staggered bolted connections

  • Xue-Mei Lin;Michael C.H. Yam;Ke Ke;Binhui,Jiang;Qun He
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.403-416
    • /
    • 2023
  • This paper summarised and re-examined the theoretical basis of the commonly used design rule developed by Cochrane in the 1920s to consider staggered bolt holes in tension members, i.e., the s2/4g rule. The rule was derived assuming that the term two times the bolt hole diameter (2d0) in Cochrane's original equation could be neglected, and assuming a value of 0.5 for the fractional deduction of a staggered hole in assessing the net section area. Although the s2/4g rule generally provides good predictions of the staggered net section area, the above-mentioned assumptions used in developing the rule are doubtful, in particular for a connection with a small gauge-to-bolt-hole diameter (g/d0) ratio. It was found that the omission of 2d0 in Cochrane's original equation appreciably overestimates the net section area of a staggered bolted connection with a small g/d0 ratio. However, the assumed value of 0.5 for the fractional deduction of a staggered hole underestimates the staggered net section area for small g/d0 ratios. To improve the applicability of the above two assumptions, a modified design equation, which covers a full range of g/d0 ratio, was proposed to accurately predict the staggered net section area and was validated by the existing test data from the literature and numerical data derived from this study. Finally, a reliability analysis of the test and numerical data was conducted, and the results showed that the reliability of the modified design equation for evaluating the net section resistance of staggered bolted connections can be achieved with the partial factor of 1.25.

Developing an Evacuation Evaluation Model for Offshore Oil and Gas Platforms Using BIM and Agent-based Model

  • Tan, Yi;Song, Yongze;Gan, Vincent J.L.;Mei, Zhongya;Wang, Xiangyu;Cheng, Jack C.P.
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.32-41
    • /
    • 2017
  • Accidents on offshore oil and gas platforms (OOGPs) usually cause serious fatalities and financial losses considering demanding environment platforms locate and complex topsides structure platforms own. Evacuation planning on platforms is usually challenging. The computational tool is a good choice to plan evacuation by emergency simulation. However, the complex structure of platforms and varied evacuation behaviors usually weaken the advantages of computational simulation. Therefore, this study developed a simulation model for OOGPs to evaluate different evacuation plans to improve evacuation performance by integrating building information modeling (BIM) and agent-based model (ABM). The developed model consists of four parts: evacuation model input, simulation environment modeling, agent definition, and simulation and comparison. Necessary platform information is extracted from BIM and then used to model simulation environment by integrating matrix model and network model. During agent definition, in addition to basic characteristics, environment sensing and dynamic escape path planning functions are also developed to improve simulation performance. An example OOGP BIM topsides with different emergent scenarios is used to illustrate the developed model. The results showed that the developed model can well simulate evacuation on OOGPs and improve evacuation performance. The developed model was also suggested to be applied to other industries such as the architecture, engineering, and construction industry.

  • PDF

Theoretical analysis of e-commerce in global economic market in terms of benefits and disadvantageous

  • He, Xiaoqiang;Li, Jialing;Hani, Ibrahim Rasool;Nhu, B.N.;Assilzadeh, H.;Ali, H. Elhosiny;Elattar, Samia
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.545-556
    • /
    • 2022
  • Through the examination of literatures, electronic commerce is a subject which is accepted in enterprises to define e-commerce adoption, trends, and issues that are assisting and obstructing its efficacy. E-commerce offers numerous advantages to consumer satisfaction in any place and helps the company to get a competitive benefit over its competitors. The Internet has expanded the scope of business. Many business information is available by the global network that supports information gathering between organizations, businesses and their clients, while various divisions of a business is increasing at an exponential rate. Meanwhile, there are a few barriers to proper e-commerce usage and adoption, such as reliable internet connections, poor e-commerce supporting infrastructures, logistics systems presenting socio-regulatory and poor transportation barriers and demonstrating the significant improvement of e-commerce reliable and affordable Internet provisions, i.e., Internet cost, intensity, and reasonable level of e-readiness. The operational and strategic significance of information-based virtual value chains for all organizations cannot be emphasized. As a consequence, this study confirms worldwide market elements of e-commerce, such as its issues, benefits, relevance, scope, facilitators and projects prospective obstacles in a developing economy.