• Title/Summary/Keyword: Cho

Search Result 86,351, Processing Time 0.1 seconds

2020 Dietary Reference Intakes for Koreans: riboflavin (2020 한국인 영양소 섭취기준: 리보플라빈)

  • Lee, Jung Eun;Cho, Jin Ah;Kim, Ki Nam
    • Journal of Nutrition and Health
    • /
    • v.55 no.3
    • /
    • pp.321-329
    • /
    • 2022
  • Riboflavin and its derivatives, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), are key components of mitochondrial energy metabolism and oxidation-reduction reactions. Proposed dietary reference intakes for Koreans (KDRIs), that is, estimated average requirements (EARs), for riboflavin, based on current knowledge of riboflavin and riboflavin derivative levels, and glutathione reductase activity, are 1.3 mg/d for men aged 19-64 years and 1.0 mg/d for women aged 19-64 years. By applying a coefficient of variance of 10%, reference nutrient intakes (RNIs) were set at 1.5 mg/d for men aged 19-64 years and 1.2 mg/d for women aged 19-64 years. Likewise, EARs and RNIs of riboflavin intake were proposed for all age groups and women in specific life stages such as pregnancy. Mean adult riboflavin intake for adults aged ≥ 19 years was 1.69 mg/d in Korea National Health and Nutrition Examination Survey (KNHANES) 2020, which was 124.9% of EAR according to the 2020 KDRIs. In the 2015-2017 KNHANES study, the mean riboflavin intake from foods and supplements was 2.79 mg/d for all age groups, and 32.7% of individuals consumed less riboflavin than EAR according to the 2020 KDRIs. For those that used supplements, mean intakes were 1.50 mg/d for riboflavin from foods, 10.26 mg/d from supplements, and 11.76 mg/d from food and supplements, and 5.5% of individuals consumed less riboflavin than EAR. Although the upper limit of riboflavin has not been established, the merits of increasing supplement use warrant further consideration. Also, additional epidemiologic and intervention studies are required to explore the role of riboflavin in the etiology of chronic diseases.

Cesium Sorption to Granite in An Anoxic Environment (무산소 환경에서의 화강암에 대한 세슘 수착 특성 연구)

  • Cho, Subin;Kwon, Kideok D.;Hyun, Sung Pil
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.101-109
    • /
    • 2022
  • The mobility and transport of radioactive cesium are crucial factors to consider for the safety assessment of high-level radioactive waste disposal sites in granite. The retardation of radionuclides in the fractured crystalline rock is mainly controlled by the hydrochemical condition of groundwater and surface reactions with minerals present in the fractures. This paper reports the experimental results of cesium sorption to the Wonju Granite, a typical Mesozoic granite in Korea, performed in an anaerobic chamber that mimics the anoxic environment of a deep disposal site. We measured the rates and amounts of cesium (133Cs) removed by crushed granite samples in different electrolyte (NaCl, KCl, and CaCl2) solutions and a synthetic groundwater solution, with variations in the initial cesium concentration (10-5, 5×10-6, 10-6, 5×10-7 M). The cesium sorption kinetic and isotherm data were successfully simulated by the pseudo-second-order kinetic model (r2= 0.99) and the Freundlich isotherm model (r2= 0.99), respectively. The sorption distribution coefficient of granite increased almost linearly with increasing biotite content in granite samples, indicating that biotite is an effective cesium scavenger. The cesium removal was minimal in KCl solution compared to that in NaCl or CaCl2 solution, regardless of the ionic strength and initial cesium concentration that we examined, showing that K+ is the most competitive ion against cesium in sorption to granite. Because it is the main source mineral of K+ in fracture fluids, biotite may also hinder the sorption of cesium, which warrants further research.

Optimal Transplanting Date for Rice Flour Cultivars to Avoid Occurrence of Pre-harvest Sprouting in Gangwon Province (강원지역 쌀가루용 벼의 이앙시기가 수발아 발생에 미치는 영향)

  • Lee, Ji-Woo;Cho, Youn-Sang;Kim, Yong-Bok;Jung, Jung-Su;Jeong, Young-Pyeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.1
    • /
    • pp.17-26
    • /
    • 2022
  • Rice is one of the three major grains globally, and has been used as a staple food in Asian countries for a long time. In recent years, with the increase in the use of processed rice, the development and distribution of rice flour varieties have become a research focus. However, rice flour varieties are susceptible to pre-harvest sprouting (PHS). In this study, the optimal transplanting date for rice flour varieties for maximum yield production with PHS avoidance was examined. Four rice flour varieties with different maturity types (early maturing type, Garumi2 and medium-late maturing type, Seolgaeng, Hangaru, and Singil) were selected. The field experiment was conducted in Chuncheon (Central Plain area) and Cheorwon (Northern Plain area), Gangwon Province, Republic of Korea, from 2017 to 2019. The transplanting dates used were May 10, May 20, May 30, June 10, and June 20 in Chuncheon and April 30, May 10, May 20, May 30, and June 10 in Cheorwon. In Chuncheon, late transplantation decreased PHS in Garumi2. In Cheorwon, PHS in Garumi2 decreased with transplantation dates after May 20. The PHS decreased in Seolgaeng, Hangaru, and Singil with late transplantation in Chuncheon and Cheorwon. The optimal transplanting date for maximum yield production while avoiding PHS for Garumi2 was estimated to be June 10 in Chuncheon and May 25 in Cheorwon; for Seolgaeng, the optimal transplanting dates were May 20 in Chuncheon and May 15 in Cheorwon; for Hangaru, it was estimated to be May 30 in Chuncheon and May 15 in Cheorwon; and for Singil, the optimal dates were May 25 in Chuncheon and May 15 in Cheorwon.

Development of Smart Digital Agriculture Technology for Food Crop Production in Korea-The Path Forward Based on Expert Feedback (식량작물 생산에 대한 스마트디지털 농업기술의 발전 방향 - 전문가 설문조사 연구)

  • Song, Ki Eun;Jung, Jae Gyeong;Cho, Seungho;Kim, Jae Yoon;Shim, Sangin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.1
    • /
    • pp.27-40
    • /
    • 2022
  • Building self-sustainable rural infrastructure and environment through smart digital agriculture technology innovation is one of the major goals of the Korean agricultural administration as a part of the nation's 4th industry revolution. To identify areas for improving and effectively investing in the acceleration of rural development, 207 experts in the areas of crop science and smart digital agriculture technology were interviewed for their opinions and suggestions on 22 questions designed to recognize fundamental agricultural issues to be addressed and solutions to advance technology innovation and rural development. Majority of the participants expected smart digital agriculture technologies to resolve major agricultural issues and help build a better rural environment. To overcome technology gaps and resolve issues more effectively, further investment in training new technology experts and building stronger agricultural technology infrastructure is urgent, and persistent and systematic support from agricultural administration appears to be the key for accelerating the process. While the leading global groups of both public and private sectors have advanced their technologies beyond the field application stage, most of the Korean technologies remain at the early pilot stage. Aging population and lack of labor in rural areas, unknown future climate change, and challenges in sustainable rural development are expected to be resolved by smart digital agriculture technologies. Technological innovations by research institutes should be promptly deployed in the crop production field, and farm training systemically organized by local technology centers can accelerate farming revolution. Standardization of equipment and data systems is another key to the success of digitalization of food crop production and food supply chains nationwide.

Provenance of the ARA07C-St02B Core Sediment from the East Siberian Margin (동시베리아해 연변부 ARA07C-St02B 코어 퇴적물의 기원지 연구)

  • Koo, Hyo Jin;Lim, Gi Taek;Cho, Hyen Goo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.1
    • /
    • pp.13-24
    • /
    • 2022
  • The Arctic Ocean is very sensitive to global warming and Arctic Ocean sediments provide a records of terrestrial climate change, analyzing their composition helps clarify global warming. The gravity core sediment ARA07C-St02B was collected at the East Siberian margin during an Arctic expedition in 2016 on the Korean ice-breaking vessel ARAON, and its provenance was estimated through sedimentological, mineralogical and geochemical analysis. The core sediment was divided into four units based on sediment color, sand content and ice-rafted debris content. Units 1 and 3 had higher sand and ice-rafted debris contents than units 2 and 4, and contained a brown layer, whereas units 2 and 4 were mainly composed of a gray layer. Correlation analysis using the adjacent core sediment ARA03B-27 suggested that the sediment units were deposited during marine isotope stage 1 to 4. The bulk mineral, clay mineral, and geochemical compositions of units including a brown layer differed from units including a gray layer. Bulk and clay mineral compositions indicated that coarse and fine sediments had a different origin. Coarse sediments might have been deposited mostly by the East Siberian Coastal Current from the Laptev Sea and the East Siberian Sea or by the Beaufort Gyre from the Chukchi Sea, whereas fine sediments might have been transpoted mostly by currents from the East Siberian Sea, the Chukchi Sea and the Beaufort Sea. Some of the coarse sediments in unit 1 and fine sediments in unit 3 might have been deposited by iceberg ice, sea ice or current from the Beaufort Sea and the Canada Archipelago. Investigating the geochemical composition of the potential origins will elucidate the origin and transportation of the study area's core sediments.

Experimental Study on the Agglomeration Characteristics of Coal and Silica Sand by addition of KOH (KOH 첨가에 의한 석탄 및 유동사의 응집특성에 대한 실험적 연구)

  • Cho, Cheonhyeon;Gil, Eunji;Lee, Uendo;Lee, Yongwoon;Kim, Seongil;Yang, Won;Moon, Jihwan;Ahn, Seokgi;Jung, Sungmook;Jeong, Soohwa
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.46-53
    • /
    • 2022
  • The agglomeration characteristics of coal and silica sand were investigated under various conditions using mixed samples consisting of coal, silica sand, and potassium hydroxide, which is an agglomeration accelerator. The samples were prepared by either physically mixing or using aqueous solutions. The experiments using the physically mixed powder samples were performed with a two hour reaction time. The results showed that the number of aggregates generated increased as the reaction temperature and the total potassium content increased. The experiments using aqueous solutions were performed at 880 ℃, which is the operating temperature of a fluidized bed boiler, and at 980 ℃, which assumes a local hot spot. The amount of agglomeration generated as the reaction time increased and the total potassium content increased was identified. In the experiment performed at 880 ℃, the amount of aggregate generated clearly increased with the reaction time, and in the experiment performed at 980 ℃, assuming a local hot spot, a large amount of aggregate was generated in a relatively short time. The aggregates became harder as the potassium content increased. When the total potassium content was less than 1.37 wt.%, the aggregates were weak at both temperatures and collapsed even with a slight impact. Additionally, the surface characteristics of the silica sand and ash aggregates were observed by SEM-EDS analysis. The analysis revealed a large amount of potassium at the bonding sites. This result indicates that there is a high possibility of aggregation in the form of a eutectic compound when the alkali component is increased.

Optimization and Application Research on Triboelectric Nanogenerator for Wind Energy Based High Voltage Generation (정전발전 기반 바람에너지 수확장치의 최적화 및 고전압 생성을 위한 활용 방안)

  • Jang, Sunmin;Ra, Yoonsang;Cho, Sumin;Kam, Dongik;Shin, Dongjin;Lee, Heegyu;Choi, Buhee;Lee, Sae Hyuk;Cha, Kyoung Je;Seo, Kyoung Duck;Kim, Hyung Woo;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.243-248
    • /
    • 2022
  • As the scope of use of portable and wearable electronic devices is expanding, the limitations of heavy and bulky solid-state batteries are being revealed. Given that, it is urgent to develop a small energy harvesting device that can partially share the role of a battery and the utilization of energy sources that are thrown away in daily life is becoming more important. Contact electrification, which generates electricity based on the coupling of the triboelectric effect and electrical induction when the two material surfaces are in contact and separated, can effectively harvest the physical and mechanical energy sources existing in the surrounding environment without going through a complicated intermediate process. Recently, the interest in the harvest and utilization of wind energy is growing since the wind is an infinitely ecofriendly energy source among the various environmental energy sources that exist in human surroundings. In this study, the optimization of the energy harvesting device for the effective harvest of wind energy based on the contact electrification was analyzed and then, the utilization strategy to maximize the utilization of the generated electricity was investigated. Natural wind based Fluttering TENG (NF-TENG) using fluttering film was developed, and design optimization was conducted. Moreover, the safe high voltage generation system was developed and a plan for application in the field requiring high voltage was proposed by highlighting the unique characteristics of TENG that generates low current and high voltage. In this respect, the result of this study demonstrates that a portable energy harvesting device based on the contact electrification shows great potential as a strategy to harvest wind energy thrown away in daily life and use it widely in fields requiring high voltage.

Retrieval of Vegetation Health Index for the Korean Peninsula Using GK2A AMI (GK2A AMI를 이용한 한반도 식생건강지수 산출)

  • Lee, Soo-Jin;Cho, Jaeil;Ryu, Jae-Hyun;Kim, Nari;Kim, Kwangjin;Sohn, Eunha;Park, Ki-Hong;Jang, Jae-Cheol;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.2
    • /
    • pp.179-188
    • /
    • 2022
  • Global warming causes climate change and increases extreme weather events worldwide, and the occurrence of heatwaves and droughts is also increasing in Korea. For the monitoring of extreme weather, various satellite data such as LST (Land Surface Temperature), TCI (Temperature Condition Index), NDVI (Normalized Difference Vegetation Index), VCI (Vegetation Condition Index), and VHI (Vegetation Health Index) have been used. VHI, the combination of TCI and VCI, represents the vegetation stress affected by meteorological factors like precipitation and temperature and is frequently used to assess droughts under climate change. TCI and VCI require historical reference values for the LST and NDVI for each date and location. So, it is complicated to produce the VHI from the recent satellite GK2A (Geostationary Korea Multi-Purpose Satellite-2A). This study examined the retrieval of VHI using GK2A AMI (Advanced Meteorological Imager) by referencing the historical data from VIIRS (Visible Infrared Imaging Radiometer Suite) NDVI and LST as a proxy data. We found a close relationship between GK2A and VIIRS data needed for the retrieval of VHI. We produced the TCI, VCI, and VHI for GK2A during 2020-2021 at intervals of 8 days and carried out the interpretations of recent extreme weather events in Korea. GK2A VHI could express the changes in vegetation stress in 2020 due to various extreme weather events such as heatwaves (in March and June) and low temperatures (in April and July), and heavy rainfall (in August), while NOAA (National Oceanic and Atmospheric Administration) VHI could not well represent such characteristics. The GK2A VHI presented in this study can be utilized to monitor the vegetation stress due to heatwaves and droughts if the historical reference values of LST and NDVI can be adjusted in a more statistically significant way in the future work.

A Study on the Introduction of Performance Certification System of Inspection and Diagnostic Equipment for Infrastructure (시설물 진단장비의 성능인증제 도입에 관한 연구)

  • Hong, Sung-Ho;Kim, Jung-Gon;Cho, Jae-Young;Kim, Do-Hyoung;Kim, Jung-Yeol;Kim, Young-Min
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.104-115
    • /
    • 2022
  • Purpose: Infrastructure inspection and its diagnostics technique have been rapidly developing recently. Therefore, it is important to secure the reliability of diagnostic equipment, and this paper deals with inspection of diagnostic equipment, introduction to a certification system and development plans for infrastructure. Method: Several certification systems are established and introduction plans are reviewed through experts by synthesizing the contents of certification research for existing infrastructure diagnosis equipment. In addition, the revision of the law for introduction of the system is reviewed, detailed operation regulations are prepared and phased development plans are reviewed, which are based on the operation scenario. Result: Inspection and certification plans were constructed through four routes in order to consider infrastructure inspection and diagnostic equipment in use, and new diagnostic equipment using state-of-the-art technology. Furthermore, market confusion depending on the introduction of a new certification system is minimized and reliability is secured by transforming a simple inspection system in the short term into a formal certification system in the long term. The law amendments according to the introduction of the system were reviewed and detailed operation regulations were developed. Also, phased development plans, which are based on the long-term development scenario including manpower, infrastructure and specifications, were presented. Conclusion: It is important to secure reliability through the distribution and certification of diagnostic equipment using 4th industrial technology to strengthen the safety management of infrastructure at the national level since the infrastructure is various in type and increasingly large in size. It is also essential to train human resources who can use new technology with inspection and diagnosis system in order to enhance the safety management of all infrastructures. Moreover, it is necessary to introduce a regular inspection system for infrastructure that combines loT technology in the long-term point of view and to promote the introduction by giving active incentives to institutions that actively accept it.

Examination of Dose Change at the Junction at the Time of Treatment Using Multi-Isocenter Volumetric Modulated Arc Therapy (용적조절호형방사선치료(VMAT)의 다중치료중심(Multi- Isocenter)을 이용한 치료 시, 접합부(Junction)의 선량 변화에 대한 고찰)

  • Jung, Dong Min;Park, Kwang Soon;Ahn, Hyuk Jin;Choi, Yoon Won;Park, Byul Nim;Kwon, Yong Jae;Moon, Sung Gong;Lee, Jong Oon;Jeong, Tae Sik;Park, Ryeong Hwang;Kim, Se young;Kim, Mi Jung;Baek, Jong Geol;Cho, Jeong Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.9-14
    • /
    • 2021
  • This study examined dose change depending on the reposition error of the junction at the time of treatment with multi-isocenter volumetric modulated arc therapy. This study selected a random treatment region in the Arccheck Phantom and established the treatment plan for multi-isocenter volumetric modulated arc therapy. Then, after setting the error of the junction at 0 ~ 4 mm in the X (left), Y (upper), and Z (inner and outer) directions, the area was irradiated using a linear accelerator; the point doses and gamma indexes obtained through the Phantom were subsequently analyzed. It was found that when errors of 2 and 4 mm took place in the X and Y directions, the gamma pass rates (point doses) were 99.3% (2.085) and 98% (2.079 Gy) in the former direction and 98.5% (2.088) and 95.5% (2.093 Gy) in the latter direction, respectively. In addition, when errors of 1, 2, and 4 mm occurred in the inner and outer parts of the Z direction, the gamma pass rates (point doses) were found to be 94.8% (2.131), 82.6% (2.164), and 72.8% (2.22 Gy) in the former part and 93.4% (2.069), 90.6% (2.047), and 79.7% (1.962 Gy) in the latter part, respectively. In the X and Y directions, errors up to 4 mm were tolerable; however, in the Z direction, error values exceeding 1 mm were beyond the tolerance level. This suggests that for high and low dose areas, errors in the direction same as the progress direction in the treatment region have a more sensitive dose distribution. If the guidelines for set-up errors are established at the institutional level through continuous research in the future, it will be possible to provide good quality treatment using junctions.