Browse > Article
http://dx.doi.org/10.22807/KJMP.2022.35.2.101

Cesium Sorption to Granite in An Anoxic Environment  

Cho, Subin (Groundwater Environment Research Center, Korea Institute of Geoscience and Mineral Resources)
Kwon, Kideok D. (Department of Geology, Kangwon National University)
Hyun, Sung Pil (Groundwater Environment Research Center, Korea Institute of Geoscience and Mineral Resources)
Publication Information
Korean Journal of Mineralogy and Petrology / v.35, no.2, 2022 , pp. 101-109 More about this Journal
Abstract
The mobility and transport of radioactive cesium are crucial factors to consider for the safety assessment of high-level radioactive waste disposal sites in granite. The retardation of radionuclides in the fractured crystalline rock is mainly controlled by the hydrochemical condition of groundwater and surface reactions with minerals present in the fractures. This paper reports the experimental results of cesium sorption to the Wonju Granite, a typical Mesozoic granite in Korea, performed in an anaerobic chamber that mimics the anoxic environment of a deep disposal site. We measured the rates and amounts of cesium (133Cs) removed by crushed granite samples in different electrolyte (NaCl, KCl, and CaCl2) solutions and a synthetic groundwater solution, with variations in the initial cesium concentration (10-5, 5×10-6, 10-6, 5×10-7 M). The cesium sorption kinetic and isotherm data were successfully simulated by the pseudo-second-order kinetic model (r2= 0.99) and the Freundlich isotherm model (r2= 0.99), respectively. The sorption distribution coefficient of granite increased almost linearly with increasing biotite content in granite samples, indicating that biotite is an effective cesium scavenger. The cesium removal was minimal in KCl solution compared to that in NaCl or CaCl2 solution, regardless of the ionic strength and initial cesium concentration that we examined, showing that K+ is the most competitive ion against cesium in sorption to granite. Because it is the main source mineral of K+ in fracture fluids, biotite may also hinder the sorption of cesium, which warrants further research.
Keywords
Cesium; Granite; Sorption; Biotite; Potassium;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zachara, J. M., Smith, S. C., Liu, C., McKinley, J. P., Serne, R. J., and Gassman, P. L., 2002, Sorption of Cs+ to micaceous subsurface sediments from the Hanford site, USA. Geochimica et cosmochimica Acta, 66, 193-211.   DOI
2 Zhang, H., Dong, Y., He, H., Li, H., Zhao, S., Liu, J., and Liao, J., 2020, Sorption of cesium on Tamusu clay in synthetic groundwater with high ionic strength. Radiochimica Acta, 108, 287-296   DOI
3 Bruno, J., and Ewing, R. C., 2006, Spent nuclear fuel. Elements, 2, 343-349   DOI
4 Grundfelt, B., 2013, Radiological consequences of accidents during disposal of spent nuclear fuel in a deep borehole (No. SKB-P--13-13). Swedish Nuclear Fuel and Waste Management Co.
5 Ho, Y. S., and McKay, G., 1999, Pseudo-second order model for sorption processes. Process biochemistry , 34, 451-465.   DOI
6 KHNP, 2022, https://www.khnp.co.kr
7 Lee, Y. M., and Hwang, Y. 2009, A GoldSim model for the safety assessment of an HLW repository. Progress in Nuclear Energy, 51, 746-759.   DOI
8 Mariner, P. E., Lee, J. H., Hardin, E. L., Hansen, F. D., Freeze, G. A., Lord, A. S., and Price, R. H., 2011, Granite disposal of US high-level radioactive waste. SAND2011-6203, Sandia, California.
9 Poinssot, C., Baeyens, B., and Bradbury, M. H., 1999, Experimental and modelling studies of caesium sorption on illite. Geochimica et cosmochimica Acta, 63, 3217-3227.   DOI
10 Sawhney, B. L., 1972, Selective sorption and fixation of cations by clay minerals: a review. Clays and clay minerals, 20, 93-100.   DOI
11 Zhang, X., Liu, B., Wang, J., Zhang, Z., Shi, K., and Wu, S., 2014, Adobe photoshop quantification (PSQ) rather than point-counting: A rapid and precise method for quantifying rock textural data and porosities. Computers and Geosciences, 69, 62-71.   DOI
12 Abdel-Karim, A. A. M., Zaki, A. A., Elwan, W., El-Naggar, M. R., and Gouda, M. M., 2016, Experimental and modeling investigations of cesium and strontium adsorption onto clay of radioactive waste disposal. Applied Clay Science, 132, 391-401.   DOI
13 Al?Duri, B., Khader, Y., and McKay, G., 1992, Prediction of binary component isotherms for adsorption on heterogeneous surfaces. Journal of Chemical Technology and Biotechnology , 53, 345-352.
14 Antelo, J., Avena, M., Fiol, S., Lopez, R., andArce, F., 2005, Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite-water interface. Journal of colloid and interface science , 285, 476-486.   DOI
15 Bouzidi, A., Souahi, F., and Hanini, S., 2010, Sorption behavior of cesium on Ain Oussera soil under different physicochemical conditions. Journal of Hazardous Materials, 184, 640-646.   DOI
16 Chitra, S., Viswanathan, S., Rao, S., and Sinha, P., 2011, Uptake of cesium and strontium by crystalline silicotitanates from radioactive wastes. Journal of Radioanalytical and Nuclear Chemistry, 287, 955-960.   DOI
17 Grutter, A., Von Gunten, H. R., and Rossler, E., 1986, Sorption, Desorption, and Isotope Exchange of Cesium (10-9-10- 3 M) On Chlorite. Clays and Clay Minerals, 34, 677-680.   DOI
18 Kong, A., Ji, Y., Ma, H., Song, Y., He, B., and Li, J., 2018, A novel route for the removal of Cu (II) and Ni (II) ions via homogeneous adsorption by chitosan solution. Journal of Cleaner Production, 192, 801-808.   DOI
19 Ewing, R. C., 2015, Long-term storage of spent nuclear fuel. Nature Materials, 14, 252-257.   DOI
20 Lee, C. P., Lan, P. L., Jan, Y. L., Wei, Y. Y., Teng, S. P., and Hsu, C. N., 2006, Sorption of cesium on granite under aerobic and anaerobic conditions. Radiochimica Acta, 94, 679-682.   DOI
21 Lee, C. P., Lan, P. L., Jan, Y. L., Wei, Y. Y., Teng, S. P., and Hsu, C. N., 2007, Anaerobic and aerobic sorption of ceisum and selenium on mudrock. Journal of radioanalytical and nuclear chemistry, 274, 145-151.   DOI
22 McCombie, C., 2005, Geological disposal: Global status and key issues. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 9, 71-80.   DOI
23 Sasaki, T., Terakado, Y., Kobayashi, T., Takagi, I., and Moriyama, H., 2007, Analysis of sorption behavior of cesium ion on mineral components of granite. Journal of nuclear science and technology, 44, 641-648.   DOI
24 Sawhney, B. L., 1967, Cesium sorption in relation to lattice spacing and cation exchange capacity of biotite. Soil Science Society of America Journal, 31, 181-183.   DOI
25 Jeong, C. H., Kim, C. S., Kim, S. J., and Park, S. W., 1996, Affinity of radioactive cesium and strontium for illite and smectite clay in the presence of groundwater ions. Journal of Environmental Science and Health Part A, 31, 2173-2192.   DOI
26 Gustafsson, J. P., 2011, Visual MINTEQ 3.0 user guide. KTH, Department of Land and Water Recources, Stockholm, Sweden .
27 Kwon, S., Kim, Y., and Roh, Y., 2021, Cesium removal using acid-and base-activated biotite and illite. Journal of Hazardous Materials, 401, 123319.   DOI
28 Hsu, C. N., Wei, Y. Y., Chuang, J. T., Tseng, C. L., Yang, J. Y., Ke, C. H., and Teng, S. P., 2002, Sorption of several safety relevant radionuclides on granite and diorite-a potential repository host rock in the Taiwan area. Radiochimica Acta, 90, 659-664.   DOI
29 Smith, E. J., Davison, W., and Hamilton-Taylor, J., 2002, Methods for preparing synthetic freshwaters. Water research, 36, 1286-1296.   DOI
30 Song, M., Probst, T. U., and Berryman, N. G., 2001, Rapid and sensitive determination of radiocesium (Cs-135, Cs137) in the presence of excess barium by electrothermal vaporization-inductively coupled plasma-mass spectrometry (ETV-ICP-MS) with potassium thiocyanate as modifier. Fresenius' journal of analytical chemistry, 370, 744-751.   DOI
31 Thegerstroem, C., and Laarouchi Engstroem, S., 2013, Deep geological disposal of nuclear waste in the Swedish crystalline bedrock. Atw. Internationale Zeitschrift fuer Kernenergie, 58, 359-363.
32 Fuller, A. J., Shaw, S., Peacock, C. L., Trivedi, D., Small, J. S., Abrahamsen, L. G., and Burke, I. T., 2014, Ionic strength and pH dependent multi-site sorption of Cs onto a micaceous aquifer sediment. Applied geochemistry, 40, 32-42.   DOI
33 Tsai, S. C., Wang, T. H., Li, M. H., Wei, Y. Y., and Teng, S. P., 2009, Cesium adsorption and distribution onto crushed granite under different physicochemical conditions. Journal of hazardous materials, 161, 854-861.   DOI
34 Wang, T. H., Chen, C. L., Ou, L. Y., Wei, Y. Y., Chang, F. L., and Teng, S. P., 2011, Cs sorption to potential host rock of low-level radioactive waste repository in Taiwan: experiments and numerical fitting study. Journal of hazardous materials, 192, 1079-1087.   DOI
35 Wang, T. H., Li, M. H., Yeh, W. C., Wei, Y. Y., and Teng, S. P., 2008, Removal of cesium ions from aqueous solution by adsorption onto local Taiwan laterite. Journal of Hazardous Materials , 160, 638-642.   DOI
36 Wu, J., Li, B., Liao, J., Feng, Y., Zhang, D., Zhao, J., and Liu, N., 2009, Behavior and analysis of cesium adsorption on montmorillonite mineral. Journal of Environmental Radioactivity,100, 914-920.   DOI
37 Sukul, P., Lamshoft, M., Zuhlke, S., and Spiteller, M., 2008, Sorption and desorption of sulfadiazine in soil and soilmanure systems. Chemosphere , 73, 1344-1350.   DOI
38 Vrdoljak, G. A., and Henderson, G. S., 1994, Specific ion adsorption at the mineral-water interface: Cesium adsorption on chlorite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 87, 187-196.   DOI
39 Warszynski, P., Lunkenheimer, K., and Czichocki, G., 2002, Effect of counter ions on the adsorption of ionic surfactants at fluid-fluid interfaces. Langmuir, 18, 2506-2514.   DOI
40 Zhang, H., Dong, Y., He, H., Li, H., Zhao, S., Liu, J., and Liao, J., 2020, Sorption of cesium on Tamusu clay in synthetic groundwater with high ionic strength. Radiochimica Acta, 108, 287-296.   DOI
41 Chang, S., Choung, S., Um, W., and Chon, C. M., 2013, Effects of weathering processes on radioactive cesium sorption with mineral characterization in Korean nuclear facility site. Journal of the Mineralogical Society of Korea, 26, 209-218.   DOI
42 Petrov, V., Vlasova, I., Kalmykov, S., Kuzmenkova, N., and Poluektov, V., 2014, Sorption of Cs, Eu and U (VI) onto rock samples from Nizhnekansky Massive.