• Title/Summary/Keyword: Chloroplast Genome

Search Result 124, Processing Time 0.028 seconds

The complete chloroplast genome of Glycyrrhiza uralensis Fisch. isolated in Korea (Fabaceae)

  • KIM, Mi-Hee;PARK, Suhyeon;LEE, Junho;BAEK, Jinwook;PARK, Jongsun;LEE, Gun Woong
    • Korean Journal of Plant Taxonomy
    • /
    • v.51 no.4
    • /
    • pp.353-362
    • /
    • 2021
  • The chloroplast genome of Glycyrrhiza uralensis Fisch was sequenced to investigate intraspecific variations on the chloroplast genome. Its length is 127,689 bp long (34.3% GC ratio) with atypical structure of chloroplast genome, which is congruent to those of Glycyrrhiza genus. It includes 110 genes (76 protein-coding genes, four rRNAs, and 30 tRNAs). Intronic region of ndhA presented the highest nucleotide diversity based on the six G. uralenesis chloroplast genomes. A total of 150 single nucleotide polymorphisms and 10 insertion and deletion (INDEL) regions were identified from the six G. uralensis chloroplast genomes. Phylogenetic trees show that the six chloroplast genomes of G. uralensis formed the two clades, requiring additional studies to understand it.

The pattern of coding sequences in the chloroplast genome of Atropa belladonna and a comparative analysis with other related genomes in the nightshade family

  • Satyabrata Sahoo;Ria Rakshit
    • Genomics & Informatics
    • /
    • v.20 no.4
    • /
    • pp.43.1-43.18
    • /
    • 2022
  • Atropa belladonna is a valuable medicinal plant and a commercial source of tropane alkaloids, which are frequently utilized in therapeutic practice. In this study, bioinformatic methodologies were used to examine the pattern of coding sequences and the factors that might influence codon usage bias in the chloroplast genome of Atropa belladonna and other nightshade genomes. The chloroplast engineering being a promising field in modern biotechnology, the characterization of chloroplast genome is very important. The results revealed that the chloroplast genomes of Nicotiana tabacum, Solanum lycopersicum, Capsicum frutescens, Datura stramonium, Lyciumbarbarum, Solanum melongena, and Solanum tuberosum exhibited comparable codon usage patterns. In these chloroplast genomes, we observed a weak codon usage bias. According to the correspondence analysis, the genesis of the codon use bias in these chloroplast genes might be explained by natural selection, directed mutational pressure, and other factors. GC12 and GC3S were shown to have no meaningful relationship. Further research revealed that natural selection primarily shaped the codon usage in A. belladonna and other nightshade genomes for translational efficiency. The sequencing properties of these chloroplast genomes were also investigated by investing the occurrences of palindromes and inverted repeats, which would be useful for future research on medicinal plants.

The complete chloroplast genome of Erigeron canadensis isolated in Korea (Asteraceae): Insight into the genetic diversity of the invasive species

  • Sang-Hun OH;Jongsun PARK
    • Korean Journal of Plant Taxonomy
    • /
    • v.53 no.1
    • /
    • pp.47-53
    • /
    • 2023
  • We have determined the complete chloroplast genome of Erigeron Canadensis isolated in Korea. The circular chloroplast genome of E. canadensis is 152,767 bp long and has four subregions: 84,317 bp of large single-copy and 18,446 bp of small single-copy regions are separated by 25,004 bp of inverted repeat regions including 133 genes (88 protein-coding genes, eight rRNAs, and 37 tRNAs). The chloroplast genome isolated in Korea differs from the Chinese isolate by 103 single-nucleotide polymorphisms (SNPs) and 47 insertions and deletion (INDEL) regions, suggesting different invasion sources of E. canadensis in Korea and China. A nucleotide diversity analysis revealed that the trend of the nucleotide diversity of E. canadensis followed that of 11 Erigeron chloroplasts, except for three peaks. The phylogenetic tree showed that our E. canadensis chloroplast is clustered with E. canadensis reported from China. Erigeron canadensis can be a good target when attempting to understand genetic diversity of invasive species.

The complete chloroplast genome of Aruncus aethusifolius (Rosaceae), a species endemic to Korea

  • PARK, Jongsun;SUH, Hwa-Jung;OH, Sang-Hun
    • Korean Journal of Plant Taxonomy
    • /
    • v.52 no.2
    • /
    • pp.118-122
    • /
    • 2022
  • Aruncus aethusifolius (H. Lév.) Nakai is an endemic species in Korea and is economically important as an ornamental herb. The complete chloroplast genome of A. aethusifolius is 157,217 bp long with four subregions consisting of 85,207 bp of large singlecopy and 19,222 bp of small single-copy regions separated by 26,394 bp of inverted repeat regions. The genome includes 131 genes (86 protein-coding genes, eight rRNAs, and 37 tRNAs). Phylogenetic analyses demonstrates that the chloroplast genome of A. aethusifolius was sister to A. dioicus var. kamtschaticus, forming the strongly supported clade of Aruncus. This is the first report of the chloroplast genome of A. aethusifolius.

Complete Chloroplast DNA Sequence from a Korean Endemic Genus, Megaleranthis saniculifolia, and Its Evolutionary Implications

  • Kim, Young-Kyu;Park, Chong-wook;Kim, Ki-Joong
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.365-381
    • /
    • 2009
  • The chloroplast DNA sequences of Megaleranthis saniculifolia, an endemic and monotypic endangered plant species, were completed in this study (GenBank FJ597983). The genome is 159,924 bp in length. It harbors a pair of IR regions consisting of 26,608 bp each. The lengths of the LSC and SSC regions are 88,326 bp and 18,382 bp, respectively. The structural organizations, gene and intron contents, gene orders, AT contents, codon usages, and transcription units of the Megaleranthis chloroplast genome are similar to those of typical land plant cp DNAs. However, the detailed features of Megaleranthis chloroplast genomes are substantially different from that of Ranunculus, which belongs to the same family, the Ranunculaceae. First, the Megaleranthis cp DNA was 4,797 bp longer than that of Ranunculus due to an expanded IR region into the SSC region and duplicated sequence elements in several spacer regions of the Megaleranthis cp genome. Second, the chloroplast genomes of Megaleranthis and Ranunculus evidence 5.6% sequence divergence in the coding regions, 8.9% sequence divergence in the intron regions, and 18.7% sequence divergence in the intergenic spacer regions, respectively. In both the coding and noncoding regions, average nucleotide substitution rates differed markedly, depending on the genome position. Our data strongly implicate the positional effects of the evolutionary modes of chloroplast genes. The genes evidencing higher levels of base substitutions also have higher incidences of indel mutations and low Ka/Ks ratios. A total of 54 simple sequence repeat loci were identified from the Megaleranthis cp genome. The existence of rich cp SSR loci in the Megaleranthis cp genome provides a rare opportunity to study the population genetic structures of this endangered species. Our phylogenetic trees based on the two independent markers, the nuclear ITS and chloroplast MatK sequences, strongly support the inclusion of the Megaleranthis to the Trollius. Therefore, our molecular trees support Ohwi's original treatment of Megaleranthis saniculifolia to Trollius chosenensis Ohwi.

Molecular Data Concerning Alloploid Character and the Origin of Chloroplast and Mitochondrial Genomes in the Liverwort Species Pellia borealis

  • Pacak, Andrezej
    • Journal of Plant Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.101-108
    • /
    • 2000
  • The liverwort Pellia borealis is a diploid, monoecious, allopolypliod species (n=18) that as it was postulated, originated after hybridization and duplication of chromosome sets of two cryptic species: Pellia epiphylta-species N (n=9) and Pellia epiphylla-species 5 (n=9). Our recent results have supported the allopolyploid origin of P.borealis. We have shown that the nuclear genome of P.borealis consists of two nuclear genomes: one derived from P.epiphylla-species N and the other from P.epiphylla-species 5. In this paper we show the origin of chloroplast and mitochondrial genomes in an allopolyploid species P.borealis. To our knowledge there is no information concerning the way of mitochondria and chloroplast inheritance in Brophyta. Using an allopolyploid species of p. borealis as a model species we have decided to look into chloroplast and mitochondrial genomes of P.borealis, P.epiphylla-species N and P.epiphylla-species S for nucleotide sequences that would allow us to differentiate between both cryptic species and to identify the origin of organelle genomes in the alloploid species. We have amplified and sequenced a chloroplast $tRNA^{Leu}$ gene (anticodon UAA) containing an intron that has shown to be highly variable in a nucleotide sequence and used for plant population genetics. Unfortunately these sequences were identical in all three liverwort species tested. The analysis of the nucleotide sequence of chloroplast, an intron containing $tRNA^{Gly}$ (anticodon UCC) genes, gave expected results: the intron nucleotide sequence was identical in the case of both P.borealis and P.epiphyllaspecies N, while the sequence obtained from P.epiphyllasperies S was different in several nucleotide positions. These results were confirmed by the nucleotide sequence of another chloroplast molecular marker the chloroplast, an intron-contaning $tRNA^{Lys}$ gene (anticodon UUU). We have also sequenced mitochondrial, an intron-containing $tRNA^{Ser}$ gene (anticodon GCU) in all three liverwort species. In this case we found that, as in the case of the chloroplast genome, P.borealis mitochondrial genome was inherited from P.epiphylla-species N. On the basis of our results we claim that both organelle genomes of P.borealis derived from P.epiphylla-species N.

  • PDF

The complete chloroplast genome of Campsis grandiflora (Bignoniaceae)

  • PARK, Jongsun;XI, Hong
    • Korean Journal of Plant Taxonomy
    • /
    • v.52 no.3
    • /
    • pp.156-172
    • /
    • 2022
  • Campsis grandiflora (Thunb.) K. Schum is an ornamental species with various useful biological effects. The chloroplast genome of C. grandiflora isolated in Korea is 154,293 bp long (GC ratio: 38.1%) and has four subregions: 84,121 bp of large single-copy (36.2%) and 18,521 bp of small single-copy (30.0%) regions are separated by 24,332 bp of inverted repeat (42.9%) regions including 132 genes (87 protein-coding genes, eight rRNAs, and 37 tRNAs). One single-nucleotide polymorphism and five insertion and deletion (INDEL) regions (40-bp in total) were identified, indicating a low level of intraspecific variation in the chloroplast genome. All five INDEL regions were linked to the repetitive sequences. Seventy-two normal simple sequence repeats (SSRs) and 47 extended SSRs were identified to develop molecular markers. The phylogenetic trees of 29 representative Bignoniaceae chloroplast genomes indicate that the tribe-level phylogenic relationship is congruent with the findings of previous studies.

The complete chloroplast genome sequence of Rhododendron caucasicum (Ericaceae)

  • Myounghai KWAK;Rainer W. BUSSMANN
    • Korean Journal of Plant Taxonomy
    • /
    • v.53 no.3
    • /
    • pp.230-236
    • /
    • 2023
  • Rhododendron caucasicum Pall. is a shrub distributed in the mountainous areas of the Caucasus from northeastern Türkiye towards the Caspian Sea. This study reports the first complete chloroplast genome sequence of R. caucasicum. The plastome is 199,487 base pairs (bp) long and exhibits a typical quadripartite structure comprising a large single-copy region of 107,645 bp, a small single-copy region of 2,598 bp, and a pair of identical inverted repeat regions of 44,622 bp each. It contains 143 genes, comprising 93 protein-coding genes, 42 tRNA genes, and eight rRNA genes. The large chloroplast genome size is likely due to the expansion of inverted repeats. A phylogenetic analysis of chloroplast genomes with other Rhododendron species supports previously recognized infrageneric relationship.

The complete chloroplast genome of Polygonatum falcatum (Asparagaceae)

  • CHOI, Tae-Young;YUN, Se-Hyun;LEE, Soo-Rang
    • Korean Journal of Plant Taxonomy
    • /
    • v.52 no.1
    • /
    • pp.80-83
    • /
    • 2022
  • Polygonatum falcatum is a perennial herb distributed in East Asia. We determined the characteristics of the complete chloroplast genome in P. falcatum for the first time, with a de novo assembly strategy. The chloroplast genome was 154,579bp in length harboring 87 protein coding genes, 38 tRNA genes and eight rRNA genes. It exhibits typical quadripartite structure comprising a large single-copy (LSC) (83,528bp), a small single-copy (SSC) (18,457bp) and a pair of inverted repeats (IRs) (26,297bp). Phylogenetic analysis of 16 chloroplast genomes from Asparagaceae reveals that the genus Polygonatum is a monophyletic group and that P. falcatum is clustered together with the congener, P. odoratum.

Comparative chloroplast genomics and phylogenetic analysis of the Viburnum dilatatum complex (Adoxaceae) in Korea

  • PARK, Jongsun;XI, Hong;OH, Sang-Hun
    • Korean Journal of Plant Taxonomy
    • /
    • v.50 no.1
    • /
    • pp.8-16
    • /
    • 2020
  • Complete chloroplast genome sequences provide detailed information about any structural changes of the genome, instances of phylogenetic reconstruction, and molecular markers for fine-scale analyses. Recent developments of next-generation sequencing (NGS) tools have led to the rapid accumulation of genomic data, especially data pertaining to chloroplasts. Short reads deposited in public databases such as the Sequence Read Archive of the NCBI are open resources, and the corresponding chloroplast genomes are yet to be completed. The V. dilatatum complex in Korea consists of four morphologically similar species: V. dilatatum, V. erosum, V. japonicum, and V. wrightii. Previous molecular phylogenetic analyses based on several DNA regions did not resolve the relationship at the species level. In order to examine the level of variation of the chloroplast genome in the V. dilatatum complex, raw reads of V. dilatatum deposited in the NCBI database were used to reconstruct the whole chloroplast genome, with these results compared to the genomes of V. erosum, V. japonicum, and three other species in Viburnum. These comparative genomics results found no significant structural changes in Viburnum. The degree of interspecific variation among the species in the V. dilatatum complex is very low, suggesting that the species of the complex may have been differentiated recently. The species of the V. dilatatum complex share large unique deletions, providing evidence of close relationships among the species. A phylogenetic analysis of the entire genome of the Viburnum showed that V. dilatatum is a sister to one of two accessions of V. erosum, making V. erosum paraphyletic. Given that the overall degree of variation among the species in the V. dilatatum complex is low, the chloroplast genome may not provide a phylogenetic signal pertaining to relationships among the species.