• Title/Summary/Keyword: Chloroethylene

Search Result 10, Processing Time 0.021 seconds

The Kinetics and Mechanism of the Hydrolysis of a 1,1-Dicyano-2-p-dimethylaminophenyl-2-chloroethylene (1,1-Dicyano-2-p-dimethylaminophenyl-2-chloroethylene의 가수분해 반응메카니즘과 그의 반응속도론적 연구)

  • Tae Rin Kim;Tae Seong Huh
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.6
    • /
    • pp.430-436
    • /
    • 1974
  • The rate constants of hydrolysis of 1,1-dicyano-2-p-dimethylaminophenyl-2-chloroethylene(DPC) were determined at various pH and the rate equation which can be applied over wide pH range is obtained. From the rate equation the mechanism of the hydrolysis of a DPC over wide pH range is fully explained; below pH 3 and above pH 7.5, the rate constant is proportional to the concentration of hydronium ion and hydroxide ion, respectively. However, in the range of pH 3 to 7.5, water, hydronium ion and hydroxide ion catalyze the hydrolysis of DPC.

  • PDF

Pyrolytic Reaction Pathway of Chloroethylene in Hydrogen Reaction Atmosphere (수소 반응분위기에서 Chloroethylene 열분해 반응경로 특성)

  • Won, Yang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.510-515
    • /
    • 2011
  • The pyrolytic reaction of 1,1-dichloroethylene($CH_2CCl_2$) has been conducted to investigate thermal decomposition of chlorocarbon and product formation pathways under hydrogen reaction environment. The reactions were studied in a isothermal tubular flow reactor at 1 atm total pressure in the temperature range $650{\sim}900^{\circ}C$ with reaction times of 0.3~2.0 sec. A constant feed molar ratio $CH_2CCl_2:H_2$ of 4:96 was maintained through the whole experiments. Complete decay(99%) of the parent reagent, $CH_2CCl_2$ was observed at temperature near $825^{\circ}C$ with 1 sec. reaction time. The important decay of $CH_2CCl_2$ under hydrogen reaction environment resulted from H atom cyclic chain reaction by abstraction and addition displacement. The highest concentration (28%) of $CH_2CHCl$ as the primary product was observed at temperature $700^{\circ}C$, where up to 46% decay of $CH_2CCl_2$ was occurred. The secondary product, $C_2H_4$ as main product was detected at temperature above $775^{\circ}C$. The one less chlorinated ethylene than parent increase with temperature rise subsequently. The HCl and dechlorinated hydrocarbons such as $C_2H_4$, $C_2H_6$, $CH_4$ and $C_2H_2$ were the main products observed at above $825^{\circ}C$. The important decay of $CH_2CCl_2$ resulted from H atom cyclic chain reaction by abstraction and addition displacement. The important pyrolytic reaction pathways to describe the features of reagent decay and intermediate product distributions, based upon thermochemical and kinetic principles, were suggested.

Synergistic Utilization of Dichloroethylene as Sole Carbon Source by Bacterial Consortia Isolated from Contaminated Sites in Africa

  • Olaniran, Ademola O.;Mfumo, Nokukhanya H.;Pillay, Dorsamy;Pillay, Balakrishna
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.205-210
    • /
    • 2006
  • The widespread use and distribution of chloroethylene organic compounds is of serious concern owing to their carcinogenicity and toxicity to humans and wildlife. In an effort to develop active bacterial consortia that could be useful for bioremediation of chloroethylene-contaminated sites in Africa, 16 combinations of 5 dichloroethylene (DCE)-utilizing bacteria, isolated from South Africa and Nigeria, were assessed for their ability to degrade cis- and trans- DCEs as the sole carbon source. Three combinations of these isolates were able to remove up to 72% of the compounds within 7 days. Specific growth rate constants of the bacterial consortia ranged between 0.465 and $0.716\;d^{-1}$ while the degradation rate constants ranged between 0.184 and $0.205\;d^{-1}$ with $86.36{\sim}93.53\;and\;87.47{\sim}97.12%$ of the stoichiometric-expected chloride released during growth of the bacterial consortia in cis- and trans-DCE, respectively. Succession studies of the individual isolates present in the consortium revealed that the biodegradation process was initially dominated by Achromobacter xylosoxidans and subsequently by Acinetobacter sp. and Bacillus sp., respectively. The results of this study suggest that consortia of bacteria are more efficient than monocultures in the aerobic biodegradation of DCEs, degrading the compounds to levels that are up to 60% below the maximum allowable limits in drinking water.

Occupational Exposure to Trichloroethylene and Non-hodgkin Lymphoma Risk (직업적 트리클로로에틸렌 노출과 비호지킨림프종의 연관성)

  • Chun, Jae-Buhm;Han, So-Hee;Yoon, Hyung-Suk;Lee, Eun-Jung;Lee, Kyoung-Mu
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.5
    • /
    • pp.358-368
    • /
    • 2011
  • Objectives: In order to evaluate the association between occupational exposure to chloroethylene (TCE) and risk of non-Hodgkin lymphoma (NHL), we conducted a meta-analysis of retrospective cohort studies and casecontrol studies and attempted to summarize the evidence of the association from molecular-epidemiological studies and experiments with human cells. Methods: In the meta-analysis, we restricted the analysis to those studies with data for chlorinated solvents, degreasers, or TCE. Studies involving dry cleaners or launderers were excluded from the analysis because use of TCE as a dry cleaning fluid has been rare since the 1960s. The data were combined using a random-effects model to estimate the summary risks (OR and RR) and 95% confidence intervals (CIs). Molecular evidence of the effect of TCE on human immune system were also reviewed and summarized. Results: Occupational exposure to TCE was strongly associated with NHL among cohort studies (number of studies=13, summary RR=1.33, 95% CI=1.04-1.70) whereas the association was not statistically significant among case-control studies (number of studies=15, summary OR=1.10, 0.98-1.23). When exposure level was considered, it became statistically significant for the highest exposure level (number of studies=5, summary OR=1.70, 1.25-2.32). Molecular evidences showed that TCE exposure in human or cultured human cells may cause a significant decrease immune cell subsets and changes in hormone levels related to immune response. Conclusions: Our results from meta-analysis and additional molecular evidence suggest that occupational exposure to TCE may cause NHL. However, unmeasured potential confounding and unclear dose-response relationships warrant further study on the role of TCE exposure in NHL carcinogenesis.

DNA Single Strand Breaks of Perchloroethylene and Its Bio-degradation Products by Single Cell Gel Electrophoresis Assay in Mammalian Cell System

  • Jeon, Hee-Kyoung;Kim, Young-Seok;Sarma, Sailendra Nlath;Kim, Youn-Jung;Sang, Byoung-In;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.2
    • /
    • pp.99-105
    • /
    • 2005
  • Perchloroethylene (tetrachloroethylene, PCE), a dry cleaning and degreasing solvent, can enter ground-water through accidental leak or spills. PCE can be degraded to trichloroethylene (TCE), 1, 1-dichloroethylene (DCE) and vinyl chloride (VC) as potential bio-product. These compounds have been reported that they can cause clinical diseases and cytotoxicity. However, only a little genotoxic information of these compounds has been known. In this study, we investigated DNA single strand breaks of PCE, TCE, DCE and VC by single cell gel electrophoresis assay, (comet assay) which is a sensitive, reliable and rapid method for DNA single strand breaks with mouse lymphoma L5178Y cells. From these results, $37.5\;{\mu}g/ml$ of PCE, $189\;{\mu}g/ml$ of TCE and $56.4\;{\mu}g/ml$ of DCE were revealed significant DNA damages in the absence of S-9 metabolic activation system meaning direct-acting mutagen. And in the presence of S-9 metabolic activation system, $41.5\;{\mu}g/ml$ of PCE, $328.7\;{\mu}g/ml$ of TCE and $949\;{\mu}g/ml$ of DCE were induced significant DNA damage. In the case of VC, it was revealed a significant DNA damage in the presence of S-9 metabolic activation system. Therefore, we suggest that chloroethylene compounds (PCE, TCE, DCE and VC) may be induced the DNA damage in a mammalian cell.

A Study on the Comparison of Atmospheric Concentrations of Volatile Organic Compounds in a Large Urban Area and a Sub-Urban Area (대도시 및 주변 교외지역의 대기 중 휘발성 유기화합물 농도 비교에 관한 연구)

  • Park, Ji-Hyae;Seo, Young-Kyo;Baek, Sung-Ok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.6
    • /
    • pp.767-778
    • /
    • 2006
  • This study was carried out to evaluate the temporal variations of VOCs at an urban site, and to compare the concentrations of VOCs at an urban site in Daegu with those at a suburban site in Gyeongsan. Three hourly VOC samples in the ambient air were collected using a sequential tube sampler (STS 25, Perkin Elmer) throughout two weeks during May and July representing spring and summer seasons, respectively. The VOC concentrations were determined by an automatic thermal desorption apparatus with GC/MS analysis. A total of 12 VOCs of environmental concern were determined, which are chloroform, benzene, trichloroethylene, toluene, tetra-chloroethylene, ethylbenzene, m+p-xylenes, o-xylene, styrene, 1,3,5- and 1,2,4-trimethylbenzenes. Among 12 target VOCs, the most abundant compound appeared to be toluene, being followed by xylenes. The mean concentrations at the urbn site were 1.2 pub for benzene and 20.4 ppb for toluene (n=221) while the mean levels at the suburban site were 0.9 ppb and 4.3 ppb for benzene and toluene (n=96), respectively. The urban site concentrations were typically several-fold higher than those measured at the suburban site. It was found that general trends of VOC levels were significantly dependent on traffic conditions at the sampling site since VOC concentrations were at their maximum during rush hours, i.e. $9{\sim}12a.m$ and $6{\sim}9p.m$. Statistical investigations were conducted to investigate any significant relationships between VOC concentrations and affecting factors. Calculated correlation coefficients among VOCs were positively significant at a level of 0.05 in most cases. Increased concentrations of toluene in the urban site were estimated to reflect the effect of large industrial sources, mainly from textile industry.

The Characteristics of Groundwaters in Taegu City (대구시 지하수의 수질특성)

  • Park Byung-Yoon;Cheon Kyung-Ah;Lee Dong-Hoon;Choi Choong-Ryeol;Choi Jyung;Kim Jin-Ho
    • Journal of Environmental Science International
    • /
    • v.8 no.6
    • /
    • pp.685-690
    • /
    • 1999
  • The pollution characteristics of groundwaters in Taegu City and correlation coefficients(r) between water pollution indicators were investigated for two years from January 1996 to December 1997. Volatile organic compounds such as TCE(tri-chloroethylene), PCE(tetrachloroethylene), l,l,l-trichloroethane, THM(trihalo-methane), dichloromethane, pesticides such as diazinon, parathion, malathion, and toxic inoganic matters such as As, Hg, Se, Pb, Cd, $Cr_6^+,$ CN were not detected in the groundwaters. Mean values of groundwater pollution indicators were below drinking-water standards, but hardness, $KMnO_4-C(potassium$ permanganate consumption), evaporate residues, $SO_4^{-2},\;Fe,\;NO_3^{-}-N,$ color and turbidity exceeded a little in some samples. As groundwater became deeper, hardness and evaporate residues remarkably increased, but $KMnO_4-C,\;NO_3^{-}-N,\;Cl-,$ color, turbity and bacteria decreased. $KMnO_4-C,$ evaporate residues, $Cl^-\;and\;SO_4^{-2}$ were very high at industrial and commercial areas, and $NO_3^--N$ and $NH_4^+-N$ were very high at agricultural and forest areas. It showed high positive significances in the relationships between hardness and each of evaporate residues, $SO_4^{-2}$, Zn and Mn, $KMnO_4-C$ and each of color, turbidity and Zn, color and each of turbidity, Cu, Zn and Mn, turbidity and each of Fe, Cu, Zn and Mn, and evaporate residues and each of $Cl^-,\;SO_4^{-2}$ and Zn.

  • PDF

Thermal Product Distribution of Chlorinated Hydrocarbons with Pyrolytic Reaction Conditions (열분해 반응조건에 따른 염화탄화수소 생성물 분포 특성)

  • Kim, Yong-Je;Won, Yang-Soo
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.198-205
    • /
    • 2010
  • Two sets of thermal reaction experiment for chlorinated hydrocarbons were performed using an isothermal tubular-flow reactor in order to investigate thermal decomposition, including product distribution of chlorinated hydrocarbons. The effects of $H_2$ or Ar as the reaction atmosphere on the thermal decomposition and product distribution for dichloromethane($CH_2Cl_2$) was examined. The experimental results showed that higher conversion of $CH_2Cl_2$ was obtained under $H_2$ atmosphere than under Ar atmosphere. This phenomenon indicates that reactive-gas $H_2$ reaction atmosphere was found to accelerate $CH_2Cl_2$ decomposition. The $H_2$ plays a key role in acceleration of $CH_2Cl_2$ decomposition and formation of dechlorinated light hydrocarbons, while reducing PAH and soot formation through hydrodechlorination process. It was also observed that $CH_3Cl,\;CH_4,\;C_2H_6,\;C_2H_4$ and HCl in $CH_2Cl_2/H_2$ reaction system were the major products with some minor products including chloroethylenes. The $CH_2Cl_2$/Ar reaction system gives poor carbon material balance above reaction temperature of $750^{\circ}C$. Chloroethylenes and soot were found to be the major products and small amounts of $CH_3Cl$ and $C_2H_2$ were formed above $750^{\circ}C$ in $CH_2Cl_2$/Ar. The thermal decomposition reactions of chloroform($CHCl_3$) with argon reaction atmosphere in the absence or the presence of $CH_4$ were carried out using the same tubular flow reactor. The slower $CH_3Cl$ decay occurred when $CH_4$ was added to $CH_3Cl$/Ar reaction system. This is because :$CCl_2$ diradicals that had been produced from $CHCl_3$ unimolecular dissociation reacted with $CH_4$. It appears that the added $CH_4$ worked as the :$CCl_2$ scavenger in the $CHCl_3$ decomposition process. The product distributions for $CHCl_3$ pyrolysis under argon bath gas were distinctly different for the two cases: one with $CH_4$ and the other without $CH_4$. The important pyrolytic reaction pathways to describe the important features of reagent decay and intermediate product distributions, based upon thermochemistry and kinetic principles, were proposed in this study.

Fixation of Sericin of Silk Fabric by Epoxy Resin (Epoxy수지에 의한 견직물의 Sericin정착)

  • 문영배;남중희
    • Journal of Sericultural and Entomological Science
    • /
    • v.26 no.2
    • /
    • pp.16-25
    • /
    • 1984
  • The sericin fixation of silk fabrics by epoxy resins was studied in the presence of aqueous salt solution in different solvents at the indicated temperature for the desired time. Heavy weight gains were obtained in the reaction with glycerol diglycidyl ether (EX-313) and ethylene glycol diglycidyl ether (EX-810) catalyzed by potassium thiocyanate in such solvents as carbon tetrachloride and p-chloroethylene. The obtained results were summarized as follows; 1) The tested resins were found similar in reaction behavior to silk fabric. The effect of fixation and weight gains was higher in EX-810 than EX-313. 2) The weight gains were increased with reaction time and temperature, and degumming ratio reached a constant value in 90 min at 70$^{\circ}C$. 3) The weight gains and the degumming ratio reached an equilibrium at 3-5% of epoxy concentration. 4) The weight gains were remarkably influenced and increased by the concentration of salt solution. The degumming ratio reached an equilibrium over 0.5N concentration of salt. 5) The weight gains were increased with the dipping time in gently-sloping. The degumming ratio reached an equilibrium over 15 min dipping. 6) The effect of sericin fixation of hydrophobic solvents, such as Carbon Tetrachloride, p-Chloroeth-ylene, Cyclohexane, Xylene and Toluene, was found suitable. 7) The effect of drying temperature was not remarkable on the weight gains and the degumming ratio. 8) There was a slight decrease in the moisture regain of sericin-fixed silk and it may be possible to maintain the moisture regain in the sericin-fixed silk by the epoxy resins. 9) The results on testing physical properties of sericin-fixed silk fabric were as follows; The crease recovery was almost not different from undegummed fabric, but inferior to degummed fabric. The tensile strength was improving in accordance with the effect of sericin fixation, either the elongation did.

  • PDF

A Harmonized Method for Dose-response Risk Assessment Based on the Hazard & Risk Evaluation of Chemicals (HREC) According to the Industrial Safety and Health Act (ISHA) (산업안전보건법 상 유해성.위험성 평가제도 적용을 위한 양-반응 평가의 통일화 방안 연구)

  • Lim, Cheol-Hong;Yang, Jeong-Sun;Park, Sang-Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.3
    • /
    • pp.175-183
    • /
    • 2012
  • Objectives: This study developed a harmonized method for risk assessment based on the Hazard & Risk Evaluation of Chemicals (HREC) according to the Industrial Safety and Health Act (ISHA). Methods: Three preliminary studies, performed during 2010 and 2011 by the Occupational Safety and Health Research Institute and three academic research groups, were compared. The differences in risk assessment, especially in the dose-response assessment method, were analyzed. A new harmonized method for dose-response assessment was suggested and its applicability for the HREC was examined. Results: Considering the various steps of each dose-response assessment, the equivalent steps in quantitative correction, uncertainty factor 2 (UF2) for intra-species uncertainty, and UF3 for the experimental period in the uncertainty correction were relatively high. Using our new method, the total correction values (quantitative correction plus uncertainty correction) ranged from 72~15,789 to 30~60, and the ratio of the threshold limit value (TLV) to the reference concentration decreased from 12.8~1900 to 5.4~11.8. Furthermore, when we performed risk characterization by our new method, hazard quotient (HQ) values for chloroethylene, epichlorohydrin, and barium sulfate became 3.0, 14.1, and 1.13 respectively, whereas three previous studies reported HQ values of 7.1, 4580, and 87.3 considering reasonable maximum exposure (RME) conditions. HQs of the three chemicals were calculated to be 0.6, 2.4, and 0.1 respectively, when compared to their TLVs. Conclusions: Our new method could be applicable for the HREC because the total correction values and the ratio of TLVs were within reasonable ranges. It is also recommended that additional risk management measures be applied for epichlorohydrin, for which the HQ values were greater than 1 when compared with both reference values and the TLV. Our proposed method could be used to harmonize dose-response assessment methods for the implementation of risk assessment based on the HREC according to ISHA.