• 제목/요약/키워드: Chlorine oxidation

검색결과 85건 처리시간 0.022초

상수처리에서 염소 및 오존산화를 이용한 색도제거 (Chromaticity removal by chlorine and ozone oxidation in water treatment)

  • 이정훈;김진근
    • 상하수도학회지
    • /
    • 제31권4호
    • /
    • pp.273-279
    • /
    • 2017
  • Optimal processes to remove chromaticity at E water treatment plant(WTP) mainly caused by algae of E lake in Jeju island were investigated based on lab-tests of chlorine and ozone oxidation. 42.9% of chromaticity of filtered water was removed by chlorine oxidation under pH 7.0~8.0, dose of 1.0 mg/L with contact time of 30~60 min. On the other hand, chromaticity removal was 71.4% when post-ozone dose of 0.9~1.9 mg/L and pH 9.0, while it was increased to 86.7% under post-ozone dose of 3.1~7.3 mg/L and pH 9.0. However, there was no significant chromaticity removal efficiency increase when ozone doses were higher than 5.0 mg/L regardless of feeding point(i.e., pre-ozonation and post-ozonation) and pHs(i.e., 7.0 and 9.0.) under the experimental conditions. Based on the results, chlorine oxidation using existing chlorination facilities at the WTP is recommended for lower chromaticity while ozone oxidation is recommended for higher chromaticity by installing new ozone feeding facilities.

이산화염소에 의한 페놀제거 및 살균 (Disinfection & Removal of Phenol by Chlorine Dioxide)

  • 정승우;최희철;강준원;김종배;최승일
    • 상하수도학회지
    • /
    • 제7권2호
    • /
    • pp.24-33
    • /
    • 1993
  • The effects of chlorine dioxide on the oxidation of phenol and disinfection were studied in the various test water conditions. With the 0.3mg/l of chlorine dioxide dose, the spiked phenol(initial concentration: 0.1mg/l) was completely oxidized within 10 minute. The removal rate of phenol was much faster in distilled water than in ground water and filtered water. The applied dose of chlorine dioxide concentrations higher than 0.2mg/l was sufficiently enough for the complete oxidation of phenol. However, with 0.1mg/l of dose, chlorine dioxide can oxidize only 20% of the spiked phenol. The reactive substances present in test water may influence the chlorine dioxide demand in water. pH effect of oxidation rate was also investigated. Increasing the pH, the removal rate of phenol was found to be increased. The disinfection test of chlorine and chlorine dioxide were conducted and compared. The lethal effect for the both disinfectants are similarly powerful. The time for 99% inactivation of E. coli was obtained within 120 sec with the 0.2mg/l of each dose.

  • PDF

튜브형 전극을 이용한 전기화학적 산화에 의한 질소제거에 관한 연구 (Nitrogen Removal by Electrochemical Oxidation Using the Tube Type Electrode)

  • 조재준;정종식;이재복
    • 상하수도학회지
    • /
    • 제18권5호
    • /
    • pp.580-587
    • /
    • 2004
  • The objective of this research is to investigate the electrochemical oxidation process for nitrogen removal in wastewater involving chloride ion and nitrogen compounds. The process experiment of electrochemical oxidation was conducted by using the stainless steel tube type reactor and the $Ti/IrO_2$ as anode. Free chlorine production and current efficiency variation for total nitrogen removal was compared depending on whether electrolyte is added, and the nitrogen type distribution under an operating condition. When chloride was added as electrolyte, it was found that production of free chlorine increased and the concentration of the chloride decreased as retention time passed. The concentration of chloride in influent decreased from 1,660 to 1,198 mg/L at the current density of $6.7A/dm^2$, while concentration of free chlorine increased to 132 mg/L. Current efficiency in removal of ammonium nitrogen was increased when chloride was dosed as electrolyte. It was observed that ammonium nitrogen was oxidized to nitrite and nitrate through electrochemical oxidation and that the concentration of total nitrogen in influent was reduced from 22.58 to 4.00 mg/L at the short retention time of 168 seconds through the electrochemical oxidation of nitrogen.

기수지역 선박평형수의 염소 생성 효율에 미치는 전기화학 처리의 영향 (Effect of Electrochemical Treatment on the Chlorine Generation Efficiency of Ballast Water in the Brackish Zone)

  • 최용선;이유기
    • 한국재료학회지
    • /
    • 제29권1호
    • /
    • pp.16-22
    • /
    • 2019
  • Indirect oxidation using chlorine species oxidizing agents is often effective in wastewater treatment using an electrochemical oxidation process. When chlorine ions are contained in the wastewater, oxidizing agents of various chlorine species are produced during electrolysis. In a ballast water management system, it is also used to treat ballast water by electrolyzing seawater to produce a chlorine species oxidizer. However, ballast water in the brackish zone and some wastewater has a low chlorine ion concentration. Therefore, it is necessary to study the chlorine generation current efficiency at various chlorine concentration conditions. In this study, the chlorine generating current efficiency of a boron-doped diamond(BDD) electrode and insoluble electrodes are compared with various chloride ion concentrations. The results of this study show that the current efficiency of the BDD electrode is better than that of the insoluble electrodes. The chlorine generation current efficiency is better in the order of BDD, MMO(mixed metal oxide), $Ti/RuO_2$, and $Ti/IrO_2$ electrodes. In particular, when the concentration of sodium chloride is 10 g/L or less, the current efficiency of the BDD electrode is excellent.

무격막식 해수 전기분해 방식을 통한 배연 탈질에 관한 연구 (A Study on the NOx Reduction of Flue Gas Using Un-divided Electrolysis of Seawater)

  • 김태우;최수진;김종화;송주영
    • Korean Chemical Engineering Research
    • /
    • 제50권5호
    • /
    • pp.825-829
    • /
    • 2012
  • 본 연구에서는 전기분해 처리된 해수의 유효염소농도와 온도에 의한 배가스 중 NO의 산화 특성을 실험적으로 살펴보았다. 실험은 무격막식 전해수가 채워진 버블링 반응기에 반응가스를 공급하여 NO 농도의 변화를 분석하였다. 폐순환 전기분해 시스템의 경우 정전류 조건에서 전해 시간이 길어질수록 전해수 내에 유효염소농도가 상승하였고, 전해수의 유효염소농도가 높을수록 NO가 $NO_2$로 산화되는 반응이 촉진됨을 확인하였다. 또한 동일한 유효염소농도를 가지는 전해수의 경우에도 온도가 높을수록 NO 산화율이 증가하였다.

자외선/염소 반응해석 모델에 의한 미량유기물질 제거에 관한 연구 (Removal of microorganic pollutants based on reaction model of UV/chlorine process)

  • 황태문;남숙현;권민환;강준원
    • 상하수도학회지
    • /
    • 제31권1호
    • /
    • pp.73-81
    • /
    • 2017
  • The UV/chlorine process is a UV-based advanced oxidation process for removing various organic pollutants in water. The process is becoming increasingly popular because of its effectiveness in practice. It is important to the safe and efficient operation of a UV/chlorine process that the optimal operating conditions for both target removal objective and saving energy are determined. Treatment efficiency of target compounds in UV/chlorine process was mainly affected by pH and scavenging factor. In this study, kinetic based mathematical model considering water characteristics and electrical energy dose calculations model was developed to predict of treatment efficiency and optimal operating conditions. The model equation was validated for the UV/chlorine process at the laboratory scale and in pilot tests at water treatment plants.

해수 전기분해를 적용한 배연 탈질 기술에 관한 연구 (A Study on the NOx Reduction of Flue Gas Using Seawater Electrolysis)

  • 김태우;김종화;송주영
    • 한국응용과학기술학회지
    • /
    • 제29권4호
    • /
    • pp.570-576
    • /
    • 2012
  • 본 연구에서는 무격막식 전기분해 처리된 해수를 산화제로하는 NO 산화반응의 특성에 대해 실험적으로 살펴보았다. 폐순환 정전류 전기분해 시스템을 통해전해 시간이 길어질수록 전해수의 유효 염소농도와 온도, 염소산 이온의 비율이 증가함을 확인하였다. 전해수가 채워진 버블링 반응기에서 전해수의 유효염소농도와 온도에 비례하여 $NO_2$로 산화되는 NO의 양이 증가하였다. 또한 산화되어 생성된 $NO_2$는 전해수에 용해되어 $HNO_3{^-}$ 이온으로 존재함을 확인하였다.

망간모래여과공정에서 망간제거에 미치는 영향인자 (Effect of Experimental Factors on Manganese Removal in Manganese Sand Filtration)

  • 김범수;윤재경;안효원;김충환
    • 상하수도학회지
    • /
    • 제20권1호
    • /
    • pp.86-93
    • /
    • 2006
  • In the drinking water treatment, the aesthetic and color problem are caused by the manganese which is occurring and present in the surface, lake and ground water. The most common treatment processes for removing manganese are known for oxidation followed by filtration. In this study, the manganese sand process was used for removing manganese with river bank filtrate as a source. In the manganese sand process, the residual chlorine and pH are important factors on the continuous manganese oxidation. In addition, space velocity (SV) and alum dosage are play a role of manganese removal. Even though manganese removal increased with increasing chlorine concentration, the control of residual chlorine is actually difficult in this process As the results of tests, the residual chlorine concentration as well as manganese removal were effectively achieved at pH 7.5. The optimum attached manganese concentration on manganese sand was confirmed to 0.3mg/L by the experimental result of a typical sand converting to manganese sand.

금속성 응집제와 모노클로라민의 상호작용이 Polyamide계 RO막 성능에 미치는 영향 (Combined Effects of Metal Coagulants and Monochloramine on Polyamide RO Membrane Performance)

  • 김경화;홍승관;박찬혁;윤성로;홍성표;이종화
    • 상하수도학회지
    • /
    • 제20권4호
    • /
    • pp.637-643
    • /
    • 2006
  • The bench-scale chlorine exposure study was performed to investigate the effect of pretreatment by free chlorine and monochloramine ($NH_2Cl$) on the performance of RO membranes made of polyamide (PA). Feed monochloramination at 2mg/L did not cause significant productivity loss compared to free chlorine. However, metal coagulants reacted with monochloramine, the PA membrane suffered from a gradual loss of membrane integrity by chlorine oxidation, which was characterized as a decrease in salt rejection. Especially, RO membranes exposed to alum coagulants with monochloramine revealed the salt rejection lower than those exposed to iron coagulants. XPS membrane surface analysis demonstrated that the chlorine uptake on the membrane surface increased and carbon peaks were shifted significantly when exposed to alum coagulants with monochloramine.