• Title/Summary/Keyword: Chlorine disinfection

Search Result 170, Processing Time 0.03 seconds

Operating Conditions for Minimization of DBPs (Disinfection by-Products) in Drinking Water Supply System (소독부산물 최소화를 위한 운영조건 연구)

  • Shin, Hyung-Soon;Choi, Phil-Kweon;Kim, Jong-Su;Choi, Ill-Woo;Kim, Sang-Hoon;Kim, Tae-Hyun;Lee, Kyung-Hee;Lee, Soo-Moon;Jang, Eun-Ah;Jung, Yeon-Hoon;Kim, Jung-Yeol
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.3
    • /
    • pp.330-337
    • /
    • 2005
  • This study was carried out to propose the managemental improvement of the purification plants and the distribution facilities which can minimize the formation of disinfection by-products in drinking water distribution system. The disinfection by-products were highly created in the water treatment plant that the organic matters were high and the chlorine dosage was excessive. The concentration of DSPs was shown the highest value in August and the lowest value in December, because of temperature and pre-chlorine dosage effect. From the result of tracer test, the travel time from the treatment plant to the end of pipeline was around 3-4 days in summer, 5-6 days in winter, respectively, and the DSPs concentration of the reservoir(end of pipe) was 2-3 times higher than that of the beginning point. The improvement of the chlorination process and structural reformation of distribution facility was demanded to minimize the DSPs increase from purification plant to the end of pipe.

A Study of Potable Water Disinfection for National Health (수돗물 살균제가 국민보건에 미치는 영향에 관한 연구)

  • Shin Soo Ok
    • Journal of Korean Public Health Nursing
    • /
    • v.10 no.1
    • /
    • pp.31-38
    • /
    • 1996
  • Disinfection is a very important process in water plant on account of our surface water usage. Particularly. the rainfall of Korea is concentrated in summer time. it is almost carried away to ocean before our utilization as water resource. To overcome the unbalance of water resource, artificial dams and reservoirs are constructed. According to such storage of water to aggravate water pollution and make the increase of water cleaning chemicals. Chlorine, as a main traditional chemical for water treatment. is focused on account of THMS formation in recent days. In this paper. the data of a water plant located in Seoul is adopted as the foundation of water quality analysis and introduce the substitute chemicals to supplement the harmful formation. additionally. Conclusions are summarized as follows: 1. The water quality of water resource is the worst in summer time and the supply of cleaning chemical is inevitably increased on account of general bacteria increase. 2. Chlorine, as a main chemical for water cleaning, formed the cancer-causing organic THMS with water molecules. 3. One of substitute chemical. chlorine dioxids suppress the formation of THMS comparing with the case of chlorine only. Therefore. the continuous research of substitute chemicals should be activated. 4. As the supply of disinfected clean water concerned with the citizen sanitary, the cultivation of professionals and academic conference must be needed on the basis of nation

  • PDF

Disinfection Effect of Chlorine, Chlorine Dioxide end Ozone on Total Coliform in Water

  • Lee, Yoonjin;Kyoungdoo Oh;Byongho Jun;Sangho Nam
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.140-143
    • /
    • 2003
  • This research was to determine and compare the inactivation of total coliform as the indicator organism with chlorine, chlorine dioxide and ozone for drinking water treatment. The inactivation of total coliform was experimentally analyzed for the dose of disinfectant, contact time, pH, Temperature and DOC. The experiments for the characterization of inactivation were performed in a series of batch processes with the total coliform as a general indicator organism based on chlorine, chlorine dioxide and ozone as disinfectants. The nearly 2.4, 3.0, 3.9 log inactivation of total coliform killed by injecting 1mg/L at 5 minutes for chlorine, chlorine dioxide and ozone. For the inactivation of 99.9%, Disinfectants required were 1.70, 1.00 and 0.60 mg/L for chlorine, chlorine dioxide and ozone, respectively. The bactericidal effects of disinfectants were decreased as the pH increased in the range of pH 6-9. The influence of pH change on the killing effect of chlorine dioxide was not strong, but that on ozone and free chlorine was sensitive. The bactericidal effects of the disinfectants were increased as the temperature increase. The activation energies were 36,053, 29,822, 24,906 J/mol of chlorine, chlorine dioxide, ozone for coliforms. The inactivation effects were shown in the lowest order of chlorine, chlorine dioxide and ozone.

  • PDF

Study on Microorganism Multiplication Behavior and Efficiency of Chlorine Disinfection in the Sewage Effluent from J Municipal Waste Water Treatment Plant (J 하수 처리장 방류수 중 세균의 성장 거동 및 염소 소독 효율 고찰)

  • Lee, Ungi;Lee, Yoonjin;Jeong, Kyuyean
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.122-128
    • /
    • 2008
  • We evaluated the relationship between the multiplication of heterotrophic microorganisms and physicochemical factors in the final discharged sewage water from J municipal waste water treatment plants. Dissolved organic carbon (DOC) was the most crucial factor influencing multiplication of heterotrophic plate counts (HPC) among the water quality variables selected. Degrading bacteria, such as proteolytic bacteria, lipholytic bacteria, starch degrading bacteria, cellulolytic bacteria, and pectinolytic bacteria, were monitored to understand the condition of nutrients in finished sewage effluent. The percentages of lipid and protein combined occupied 81% in finished sewage water. The multiplication of HPC showed the highest value in August. The formation of trihalomethane (THM) was low in the finished discharge water during chlorine disinfection, which was $71{\mu}/L$ (which was less than $100{\mu}/L$- the standard of drinking water quality) with 10 mg/L of chlorine during 15 min.

Effects of pH, Water Temperature and Chlorine Dosage on the Formation of Disinfection Byproducts at Water Treatment Plant (pH, 수온, 염소주입량이 정수장 소독부산물 생성에 미치는 영향)

  • Lee, Ki-chang;Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.9
    • /
    • pp.505-510
    • /
    • 2015
  • This study investigated formation potential of 16 disinfection byproducts (DBPs) (e.g., g trihalomethanes, haloacetic acids, haloacetonitriles, chloral hydrate, etc.) upon chlorination of raw water at various pH, water temperatures, and chlorine doses. We also compared the DBP formation potential (DBPFP) of raw and filtered waters. Most of DBPs were formed higher at neutral pH, but dichloroacetic acid, chloroform, and bromodichloromethane were formed higher over pH 7. As water temperature increased, concentrations of chloral hydrate, haloacetic acids, and haloacetonitriles linearly increased while that of trihalomethanes exponentially increased. Formation of chloral hydrate, trihalomethanes, and trihaloacetonitriles significantly increased up to 2.0 mg/L $Cl_2$ of chlorine addition, then gradually increased at 2.0~5.6 mg/L $Cl_2$. Filtered water formed less DBPs than raw water in most DBPs except for trihalomethanes.

The Bactericidal Effects of Chlorine Dioxide in Drinking Water (이산화염소에 의한 수돗물의 살균효과)

  • 이윤진;최종헌;우달식;남상호
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.3
    • /
    • pp.52-57
    • /
    • 1998
  • The disinfection of public water supplies has been used to prevent the transmission of waterborne diseases throughout the worlds. Although chlorine has been used as the primary disinfactant, its safety was first questioned in 1974 when chlorination of drinking water was found to result in the formation of trihalomethanes(THMs). Chlorine dioxide was selected as one alternative disinfactant. But the application of chlorine dioxide in water treatment has been limited because of concerns about the health effects of DBPs. In these experiments, chlorine dioxide showed the effective inactivation on both total coliforms and HPC at 3.0 mg $ClO_2/L$. The bactericidal effects of chlorine dioxide showed a tendency to increase as pH decreased, but the differences were not so sizable.

  • PDF

Variation of Disinfection-by-Prodcut in Distribution System and Evaluation of Correlation between Disinfection-by-Product and Physico-Chemical Parameters (관망에서의 소독부산물 변화와 관련 영향인자들의 상관관계 분석)

  • Song, Young Il;Ann, Suna;Ann, Seoungyun;Seo, Daeguen;Cho, Hyukjin;Lee, Jaesung;Choi, Ilwhan;Shin, Changsoo;Lee, Hee Suk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.2
    • /
    • pp.63-70
    • /
    • 2016
  • The distributed systems managed by K-water were surveyed to study the characteristic of disinfection-by-product (Trihalomethans & Haloacetic acids) formation and the correlations between the concentrations of disinfection-by-product and physico-chemical parameters. Five distribted system were selected according to their water ages and the degree of deterioration of their pipelines. Total seven items including Trihalomethans (THMs), Haloacetic acids (HAAs), BDOC, DOC, pH, chlorine residual, and temperature were analysed in monthly basis. The concentration of organic matter were increased according to water age and pipeline deterioration in this study. The coefficient of determination between the decline of residual chlorine and the increase of water age was revealed as high. Also, the coefficient of determination between the decline rate of residual chlorine and the increase of the Trihalomethans concentration were studied as high. Furthermore the longer water age is the bigger the effect on Trihalomethans formation and temperature. However, the coefficient of determination between the concentraion of Haloacetic acid and water age, residual chlorine, and temperature were revealed as low in this study.

Chlorine Disinfection in Water Treatment Plants and its Effects on Polyamide Membrane (수처리장에서의 염소살균처리가 폴리아마이드 분리막에 미치는 영향)

  • Jun, Byung-Moon;Yun, Eun-Tae;Han, Sang-Woo;Nguyen, Thi Phuong Nga;Park, Hyung-Gyu;Kwon, Young-Nam
    • Membrane Journal
    • /
    • v.24 no.2
    • /
    • pp.88-99
    • /
    • 2014
  • Demand for water is increasing due to rapid population growth and increased industrial activities. Membrane technologies have attracted most attention as a promising advanced technology for the supply of sustainable water resources. Chemical and structural properties of polyamide membranes, one of the most widely used membranes in water treatment plant, has been reported to be affected by residual chlorine dissolved in water after chlorine disinfection. This paper focuses on the chlorine speciation at various solution pHs and change of surface properties/performance of polyamide membranes due to the chlorine exposure.

Reduced Post-Chlorine Dosage Required for Disinfection: Improvement with Ozonation and GAC Process (오존 및 입상활성탄 도입시 후염소 주입량 저감효과 분석)

  • Baek, Young-Ae;Joe, Woo-Hyeun;Kim, Jong-Moon;Choi, Young-Jun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.445-452
    • /
    • 2007
  • This study was carried out to examine effect of post-chlorine dosage reduction by ozonation and GAC process in the field plant for 3years in the "G" water purification plant in Seoul. And it is to compare GAC with BAC process in removal effects of TOC, THMs, THMFP, $UV_{254}$. As a result, chlorine dosage of ozonation and GAC(=BAC) is less demand than GAC. Seasonal reduction of chlorine demand is from about 37% to 59% with BAC, and from 24 to 46% with GAC. Higher reduction in BAC could be achieved. The efficiency of chlorine demand reduction with ozonation was depending on the organic carbon removal. $UV_{254}$ concentration is less about 0.13~0.74L/mg.m in BAC than GAC. Therefore, the combination of ozonation and GAC was more effective in reducing post-chlorine than the single GAC. TOC was also monitored, and results show that a linear relationship between TOC and chlorine demand is appropriate under each treatment process. It means that removal of organic matter(TOC) from finished water is necessary to reduce post-chlorine dosage in clear well and to minimize order of chlorine in distribution systems.

Disinfection Characteristics of Waterborne Pathogenic Protozoa Giardia lamblia

  • Kim, Kyongjoo;Wooksun Hong;Lee, Kisay
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.2
    • /
    • pp.95-99
    • /
    • 2001
  • Giardia lamblia is a parasitic protozoa which is transmitted in the form of a cyst through untreated water and also treated drinking water. Since its presence in water has led to frequent outbreaks of giardiasis and death in many countries, the removal and disinfection of this protozoan cyst from the water supply are of great concern for public health. This study examined the disinfection characteristics of G. lamblia cysts isolated from a Korean patient with giardiasis. When using sodium hypochlorite including 5 or 10 ppm chlorine, the killing rate was initially rapid, however, the disinfection slowed down and a 3log reduction could not be achieved even after 2h. The disinfection effectiveness was also reduced at a lower temperature, thereby implying that the risk o a giardiasis outbreak will be higher in the winter season. A CT (concentration$.$time) curve was constructed based on the results with sodium hypochlorite for use in designing and predicting disinfection performance. The organic chlorination disinfectant SDIS (sodium dichloroisocyanurate) produced a lower pH and a much higher residual effect than sodium hypochlorite. The disinfection of cysts by SDIC continued steadily throughout 2h of contact, although the initial killing rate was lower than that with sodium hypochlorite.

  • PDF