• Title/Summary/Keyword: Chlorine Control

Search Result 230, Processing Time 0.026 seconds

Experimental Chemical Treatments for the Control of Dinoflagellate Cochlodinium polykrikoides in the Land-based Culture of Olive Flounder Paralichthys olivaceus (넙치 육상수조 양식에 있어 편조류 Cochlodinium polykrikoides의 구제를 위한 화학적 처리)

  • Ryu, Ho-Young;Shim, Jeong-Min;Bang, Jong-Deuk;Lee, Chu
    • Journal of Aquaculture
    • /
    • v.11 no.3
    • /
    • pp.285-294
    • /
    • 1998
  • When Cochlodinium polykrikoides came into the culture tanks through influent cultivated water during the red tides, hundred thousands of commercial flounders were concomitantly killed and many culturists suffered from a great deal of financial loss in the east coast of Korea. It is charactrized by high sinking rate after sunset and the formatino of clump which results in oxygen deficiency by its respiration at tank bottom under condition. We investigated the efficacy of hydrogen peroxide and chlorine dioxide, known to form radicals, for extermination of red tide organism C. polykrikoides. When C. polykrikoides seawater with a density of 6,000 cells/$m\ell$ was treated with 14, 28 and $42mg/\ell$ of hydrogen peroxide, its survival rate was markedly decreased to 9.8, 0.8 and 0.3% respectively immediately after 6 hours of treatments whereas when it was treated with 1.5, 2.1 and $3.0mg/\ell$ chlorine dioxide, its survival rate showed 87.7, 81.3 and 80.1 and 80.1% respectively at the same treatment time. Hydrogen peroxide was the effective agent since it has scarcely injured the cultured olive flounder when exposed to the tested concentration range of $14~28mg/\ell$ with the extermination of almost3 C. polykrikoides during the experimental period of 5 days and has shown the oxygen increase of approximately $1.23mg/\ell$ 2 hours immediately after the flounder by C. polykrikoides in the land-based culture tank is assumed to be not by the toxicity of itself but by oxygen dificiency from the rapid respiration of dinoflagellate clump sunken to the tank bottom.

  • PDF

The Effect of Oxidizing Agents on Alkaloid Reduction of Tobacco Extract (담배추출물의 알카로이드감소에 미치는 산화제의 영향)

  • 황건중
    • Journal of Environmental Health Sciences
    • /
    • v.8 no.2
    • /
    • pp.33-46
    • /
    • 1982
  • This experiment was carried out for the purpose of reducing alkaloid in reconstituted tobacco sheet and effluent of reconstituted tobacco sheet manufacturing company by treating oxidizing agents such as ozone, sodium hypochlorite, perchloric acid and hydrogen peroxide to tobacco extract created from the manufacturing process of reconstituted tobacco sheet. The effect of alkaloid reduction in tobacco extract by the volume added, time of treatment and pH of oxidizing agents were as follows: 1. When the solid rate of tobacco extract stood at 10 percent, the content of alkaloid, total sugar, total nitrogen and chlorine was 1,600mg/l, 11,000mg/l, 3,200mg/l and 4,000mg/l, respectively. 2. The effect of alkaloid reduction through ozone treatment was in proportion to time of ozone treatment. Alkaloid showed a 31.2 percent reduction under 8 hours' ozone treatment and 0.23g ozone consumed to remove lmg alkaloid. 3. Alkaloid reduction through sodium hypochlorite treatment was influenced by quantity of chlorine in sodium hypochlorite solution. To remove lmg alkaloid, 36.3mg chlorine was used. Reduction of alkaloid was not affected by time of sodium hypochlorite treatment, while showed the best reaction under pH 5-7. 4. The effect of alkaloid reduction by perchloric acid was under the control of the volume added and time of treatment of perchloric acid. The volume of perchloric acid required to remove alkaloid was on the decrease as time of treatment was getting longer. lmg alkaloid was removed by 0.15g perchloric acid under 8 hours' perchloric acid treatment. 5. Alkaloid reduction reacted slowly to the volume added and time of treatment of hydrogen peroxide. Under 8 hours' hydrogen peroxide treatment, it showed maximum removal, registering 10 percent alkaloid reduction.

  • PDF

Effect of Chlorine Dioxide Gas Application to Egg Surface: Microbial Reduction Effect, Quality of Eggs, and Hatchability

  • Chung, Hansung;Kim, Hyobi;Myeong, Donghoon;Kim, Seongjoon;Choe, Nong-Hoon
    • Food Science of Animal Resources
    • /
    • v.38 no.3
    • /
    • pp.487-497
    • /
    • 2018
  • Controlling of microorganisms in the industrial process is important for production and distribution of hatching and table eggs. In the previous study, we reported that chlorine dioxide ($ClO_2$) gas of a proper concentration and humidity can significantly reduce the load of Salmonella spp. on eggshells. In this study, we compared microbial reduction efficacy on egg's surface using hatching eggs and table eggs, internal quality of table eggs, and hatchability after both the conventional method (washing and UV expose, fumigation with formalin) and $ClO_2$ gas disinfection. Application of 40 ppm $ClO_2$ gas to the table and hatching eggs, respectively, reduced the aerobic plate count (APC) with no statistical difference compared with the conventional methods. Additionally, we didn't observed that any significant difference in albumin height, Haugh unit (HU), and yolk color, this result confirms that 40 ppm $ClO_2$ had no effect on the internal quality of the table eggs, when comparing with the UV treatment method. The hatchability of hatching eggs was not statistical different between formaldehyde fumigation and 80 ppm $ClO_2$ gas treatment, though the value was decreased at high concentration of 160 ppm $ClO_2$ gas. From these results, we recommend that $ClO_2$ gas can be used as a safe disinfectant to effectively control egg surface microorganisms without affecting egg quality.

Inhibition of Growth and Activity of Iron Oxidizing Bacteria for the Prevention of Acid Mine Drainage Production (철산화 박테리아의 생장 및 활성 억제를 통한 산성광산배수의 발생 저감)

  • Park, Youngtae;Yang, Jungseok;Kwon, Manjae;Yun, Hyunshik;Ji, Minkyu;Jee, Eundo;Lee, Wooram;Ji, Wonhyun;Kwon, Hyunho;Choi, Jaeyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.5-11
    • /
    • 2012
  • Acid mine drainage (AMD) is one of the most severe environmental problem that results from the oxidation of pyrite $(FeS_2)$ and various other metal sulfides. In this study, the influence of microorganism was tested on the process where AMD was released and the method to inhibit AMD generated by microorganisms at abandoned mine area. The activity and growth rate of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans, common microorganisms affecting AMD occurrence, were measured. Chlorine dioxide $(ClO_2)$, NaCl, or surfactant (ASOR-770) was used as an inhibitor for working on activity and growth of microorganism. Among the three inhibitors, 10ppm of chlorine dioxide was the most effective inhibitor for AMD control due to the reduced the activity and growth of microorganisms by 20%.

Study on the growth and control of algae using effluent of sewage treatment facility (하수처리장 방류수 재이용에 따른 조류 생장 및 제어방안 연구)

  • Park, Soo young;Kim, Jin Han;Park, Jung Hwan;Ahn, Kyung Soo
    • Journal of Wetlands Research
    • /
    • v.7 no.3
    • /
    • pp.67-73
    • /
    • 2005
  • At research, the river's water which the sewage treatment facility will ask growth suppression the algae in the artificial rivers which it is using or it researched the method for the removal of the algae which grew. At results, when 60ppm of Chlorine was put in, the possibility of getting the result where 90% chlorophyll-a was removed and LC50 was 0.8ppm. The algae did not create even after 20days by which uses prevent agent of creation of the algae. Controlling the chlorine almost there was not an extinction effect of the algae which was already in large quantities multiplied, with in the effect against an water ecosystem widely known it is not. The prevent agent could inhibit creation of the algae, but it was judged with the fact that the methods are directly applied to the field must be researched continuously.

  • PDF

In Vitro and In Vivo Inhibitory Effects of Gaseous Chlorine Dioxide Against Diaporthe batatas Isolated from Stored Sweetpotato

  • Lee, Ye Ji;Jeong, Jin-Ju;Jin, Hyunjung;Kim, Wook;Yu, Gyeong-Dan;Kim, Ki Deok
    • The Plant Pathology Journal
    • /
    • v.35 no.1
    • /
    • pp.77-83
    • /
    • 2019
  • Chlorine dioxide ($ClO_2$) can be used as an alternative disinfectant for controlling fungal contamination during postharvest storage. In this study, we tested the in vitro and in vivo inhibitory effects of gaseous $ClO_2$ against Diaporthe batatas SP-d1, the causal agent of sweetpotato dry rot. In in vitro tests, spore suspensions of SP-d1 spread on acidified potato dextrose agar were treated with various $ClO_2$ concentrations (1-20 ppm) for 0-60 min. Fungal growth was significantly inhibited at 1 ppm of $ClO_2$ treatment for 30 min, and completely inhibited at 20 ppm. In in vivo tests, spore suspensions were drop-inoculated onto sweetpotato slices, followed by $ClO_2$ treatment with different concentrations and durations. Lesion diameters were not significantly different between the tested $ClO_2$ concentrations; however, lesion diameters significantly decreased upon increasing the exposure time. Similarly, fungal populations decreased at the tested $ClO_2$ concentrations over time. However, the sliced tissue itself hardened after 60-min $ClO_2$ treatments, especially at 20 ppm of $ClO_2$. When sweetpotato roots were dip-inoculated in spore suspensions for 10 min prior to treatment with 20 and 40 ppm of $ClO_2$ for 0-60 min, fungal populations decreased with increasing $ClO_2$ concentrations. Taken together, these results showed that gaseous $ClO_2$ could significantly inhibit D. batatas growth and dry rot development in sweetpotato. Overall, gaseous $ClO_2$ could be used to control this fungal disease during the postharvest storage of sweetpotato.

Effects of chlorine dioxide gas fumigation on the storage quality of astringent persimmon (Diospyros kaki T.) Cheongdobansi

  • Jiyoon Kim;Jung Soo Kim;Minhyun Kim;Ji Hye Kim;Insun Kim;Inju Nam;Jong-Kuk Kim;Kwang-Deog Moon
    • Food Science and Preservation
    • /
    • v.30 no.2
    • /
    • pp.190-204
    • /
    • 2023
  • Because of their short harvest season, large quantities of persimmons must often be processed within a limited time. Therefore, new methods to extend their storage life are required. This study examined the effects of chlorine dioxide (ClO2) gas fumigation for various treatment periods on the storage quality of astringent persimmons Cheongdobansi under low-temperature conditions. The conditions consisted of continuous treatment with ClO2, treatment for 2 weeks with ClO2, and no treatment, all of which are stored at low temperatures. Control samples (storage 0 days) without any treatment were prepared and all experiments were conducted for 10 weeks at two-week intervals. The ClO2 gas treatment maintained the moisture content, color value, hardness, soluble tannin content, and sensory characteristics. However, ClO2 gas treatment did not affect the soluble solids, pH, and total sugar content. In particular, continuous treatment with ClO2 maintained the storage quality after 6-8 weeks of storage, particularly the hardness and weakness (sensory evaluation). The results suggest the potential of continuous treatment with ClO2 as a highly effective method for maintaining the freshness of Cheongdobansi.

Effects of film liners, ethylene scrubber, alcohol releaser and chlorine dioxide on the berry quality during simulated marketing in 'Campbell Early' grapes

  • Kim, Sung-Joo;Choi, Cheol;Ahn, Young-Jik;Lim, Byung-Sun;Chun, Jong-Pil
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.415-424
    • /
    • 2020
  • This study investigated the effects of an ethylene scrubber (ES) with a micro-perforated polypropylene (MP-PP, 30 ㎛) or a high density polyethylene (MP-HDPE, 30 ㎛) film liner for the export carton packaging box in 'Campbell Early' grapes. Rachis browning was highest in the untreated group, followed by MP-PP and MP-HDPE for 14 days of simulated marketing at 20℃. The combination treatment of ES with the film liners showed a partial inhibition of the rachis browning regardless of the film liners. The effects of an alcohol releaser (AR) sachet or chlorine dioxide (CD) diffuser co-packaging were also investigated in the 'Campbell Early' grapes packed with the MP-HDPE (40 × 99 pin hole·m-2) film liner. The CD 1 g treatment showed a very limited weight loss of 1.1%, which was significantly lower than the 4.7% of the untreated control after 14 days of simulation marketing at 20℃. The berry shatter was 0.7% for the MP-HDPE + CD 1 g treatment and 1.8% for the MP-HDPE + CD 5 g treatment on the 10th day of the simulated marketing, which was significantly lower than the 8.9% of the control. The stem browning was significant suppressed until the 10th day of the simulated marketing. In particular, the CD 1 g treatment in combination with the MP-HDPE showed a low rachis and pedicel browning index of 2.0, which is 50% and 40% lower than that of the untreated control and the MP-HDPE single treatment, respectively. In addition, the CD 1 g treatment group showed a higher decay reduction effect than the CD 5 g treatment group, which caused high concentration damage.

Quality Changes of Cherry Tomato by Aqueous Chlorine Dioxide Treatment during Storage (이산화염소수 처리에 의한 방울토마토의 저장 중 품질 변화)

  • Lee, Kyung-Haeng;Yoon, Young-Tae;Ra, So-Jung
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.3
    • /
    • pp.396-403
    • /
    • 2015
  • To improve the shelf-life of cherry tomato, samples were treated with aqueous chlorine dioxide ($ClO_2$) at 30 ppm for 0~30 minutes and the weight loss rate as well as the changes in physico-chemical and sensory properties of treated samples were investigated. Weight change in the control and in the samples with aqueous $ClO_2$ treatment were decreased slightly, and there were no difference during the storage period. There were no differences in soluble solid content among the treatments and during the storage period. There were no differences in the firmness of samples among the treatments but the firmness of the aqueous $ClO_2$ treated samples were decreased slower than that of the control samples. No significant changes in lightness, redness and yellowness of the controls and the samples by aqueous $ClO_2$ treatment were observed during 4 weeks storage period. The sensory parameters including taste, flavor, color, texture and overall acceptance at the initial period did not differ among the treatments. The scores for taste, texture and overall acceptance of the control were decreased faster than those of the aqueous $ClO_2$ treated samples when 3 weeks reached.

Effects of Chlorine Dioxide Treatment on Quality and Microbial Change of Agaricus bisporus Sing during Storage (이산화염소 처리가 저장 중 양송이버섯(Agaricus bisporus Sing)의 품질 및 미생물학적 변화에 미치는 영향)

  • Ku, Kyoung-Ju;Ma, Yu-Hyun;Shin, Hee-Young;Lee, Seung-Hwan;Park, Jae-Hyun;Kim, Lan-Hee;Song, Kyung-Bin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.7
    • /
    • pp.955-959
    • /
    • 2006
  • Effects of chlorine dioxide ($ClO_2$) on weight loss, polyphenol oxidase activity, and microbial change of fresh mushrooms (Agricus bisporus Sing) were investigated. Mushrooms were treated with 5, 10, and 50 ppm of $ClO_2$ solution. Mushrooms were stored at room temperature and $4^{\circ}C$. Weight loss for $ClO_2$ treated mushrooms was smaller than that of the control group. Polyphenol oxidase activity of the $ClO_2-treated$ samples stored at room temperature increased until day 2 of storage and then decreased, and the activity of the samples stored bacteria, yeast and mold counts than the control during storage. Aerobic bacterial counts for 50 ppm of $ClO_2$ treatment at $4^{\circ}C$ increased from $1.62{\times}10^2\;CFU/g\;to\;1.66{\times}10^7\;CFU/g$ at day 10 of storage, while control groups were from $1.00{\times}10^3\;CFU/g\;to\;3.72{\times}10^8\;CFU/g$. These results indicate that $ClO_2$ treatment could be useful in improving the quality and microbial safety of mushrooms.