• Title/Summary/Keyword: Chloride penetration analysis

Search Result 100, Processing Time 0.024 seconds

Analysis of chloride penetration in the marine concrete pier (해양환경 콘크리트 교각의 염소이온 침투해석)

  • Kim, Ki-Hyun;Cha, Soo-Won;Jang, Sung-Yup;Park, Byoung-Sun;Chang, Sung-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.549-552
    • /
    • 2008
  • Corrosion of reinforcing steel is prohibited under normal condition by the alkalinity of the pore water in the concrete. But the probability of steel corrosion becomes higher when the chloride ions are introduced into the concrete. Steel corrosion is decisive factor for the determination of service life of the marine concrete structures because chloride ions are abundant in the sea. In this paper, chloride penetration analysis for the rectangular pier in the marine environment is performed considering the diffusion movement of chlorides. Result reveals that the chloride concentration in the corner bar is higher than that of in the side bar with rectangular pier. Also the time to the specified accumulation of chloride in the corner bar is much shorter than that in the side bar. Because the corrosion initiation time of corner bar is half as much as that of side bar, service life for the rectangular pier in marine environment should be determined with respect to the coner bar.

  • PDF

Effects of subsequent curing on chloride resistance and microstructure of steam-cured mortar

  • Hu, Yuquan;Hu, Shaowei;Yang, Bokai;Wang, Siyao
    • Advances in concrete construction
    • /
    • v.9 no.5
    • /
    • pp.449-457
    • /
    • 2020
  • The influence of subsequent curing on the performance of fly ash contained mortar under steam curing was studied. Mortar samples incorporated with different content (0%, 20%, 50% and 70%) of Class F fly ash under five typical subsequent curing conditions, including standard curing (ZS), water curing(ZW) under 25℃, oven-dry curing (ZD) under 60℃, frozen curing (ZF) under -10℃, and nature curing (ZN) exposed to outdoor environment were implemented. The unsteady chloride diffusion coefficient was measured by rapid chloride migration test (RCM) to analyze the influence of subsequent curing condition on the resistance to chloride penetration of fly ash contained mortar under steam curing. The compressive strength was measured to analyze the mechanical properties. Furthermore, the open porosity, mercury intrusion porosimetry (MIP), x-ray diffraction (XRD) and thermogravimetric analysis (TGA) were examined to investigate the pore characteristics and phase composition of mortar. The results indicate that the resistance to chloride ingress and compressive strength of steam-cured mortar decline with the increase of fly ash incorporated, regardless of the subsequent curing condition. Compared to ZS, ZD and ZF lead to poor resistance to chloride penetration, while ZW and ZN show better performance. Interestingly, under different fly ash contents, the declining order of compressive strength remains ZS>ZW>ZN>ZD>ZF. When the fly ash content is blow 50%, the open porosity grows with increase of fly ash, regardless of the curing conditions are diverse. However, if the replacement amount of fly ash exceeds a certain high proportion (70%), the value of open porosity tends to decrease. Moreover, the main phase composition of the mortar hydration products is similar under different curing conditions, but the declining order of the C-S-H gels and ettringite content is ZS>ZD>ZF. The addition of fly ash could increase the amount of harmless pores at early age.

Probability-based durability design software for concrete structures subjected to chloride exposed environments

  • Shin, Kyung-Joon;Kim, Jee-Sang;Lee, Kwang-Myong
    • Computers and Concrete
    • /
    • v.8 no.5
    • /
    • pp.511-524
    • /
    • 2011
  • Although concrete is believed to be a durable material, concrete structures have been degraded by severe environmental conditions such as the effects of chloride and chemical, abrasion, and other deterioration processes. Therefore, durability evaluation has been required to ensure the long term serviceability of structures located in chloride exposed environments. Recently, probability-based durability analysis and design have proven to be reliable for the service-life predictions of concrete structures. This approach has been successfully applied to durability estimation and design of concrete structures. However, currently it is difficult to find an appropriate method engineers can use to solve these probability-based diffusion problems. In this paper, computer software has been developed to facilitate probability-based durability analysis and design. This software predict the chloride diffusion using the Monte Carlo simulation method based on Fick's second law, and provides durability analysis and design solutions. A graphic user interface (GUI) is adapted for intuitive and easy use. The developed software is very useful not only for prediction of the service life but for the durability design of the concrete structures exposed to chloride environments.

Analysis for Chloride Penetration in Concrete under Deicing Agent using Multi Layer Diffusion (다층구조확산을 고려한 제설제에 노출된 콘크리트의 염화물 해석)

  • Seo, Ji-Seok;Kwon, Seung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.4
    • /
    • pp.114-122
    • /
    • 2016
  • Concrete is cost-benefit and high-durable construction material, however durability problem can be caused due to steel corrosion under chloride attack. Recently deicing salt has been widely spread in snowing season, which accelerates micro-cracks and scaling in surface concrete and the melted deicing salt causes corrosion in embedded steel. The previous governing equation of Fick's 2nd Law cannot evaluate the deteriorated surface concrete so that another technique is needed for the surface effect. This paper presents chloride penetration analysis technique for concrete subjected to deicing salt utilizing multi-layer diffusion model and time-dependent diffusion behavior. For the work, field investigation results of concrete pavement exposed deicing salt for 18 years are adopted. Through reverse analysis, deteriorated depth and increased diffusion coefficient in the depth are evaluated, which shows 12.5~15.0mm of deteriorated depth and increased diffusion coefficient by 2.0 times. The proposed technique can be effectively applied to concrete with two different diffusion coefficients considering enhanced or deteriorated surface conditions.

Chloride penetration in the marine concrete pier considering diffusion and convection (확산과 이송을 고려한 해양 콘크리트 교각의 염소이온 침투해석)

  • Kim, Ki-Hyun;Cha, Soo-Won;Jang, Sung-Yup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.413-416
    • /
    • 2008
  • Reinforcement corrosion is generally prohibited under normal condition by the alkalinity of the pore water in the concrete. However, concrete structures in marine environment are subjected to chloride attack due to the high salinity of the sea water. Thus the probability of steel corrosion becomes higher when the chloride ions are introduced into the concrete. Steel corrosion is a decisive factor for the determination of service life of the marine concrete structure because chloride ions are abundant in the sea, and piers are the typical construction elements in concrete structures in marine environment. Hence, it is of great importance to evaluate the service life of the piers. In this paper, chloride penetration analysis for the rectangular pier in the marine environment is performed considering the diffusion and convection movement of chlorides. Result reveals that the service life of the reinforcement with drying-wetting cycles is much shorter than that of the reinforcement with saturated condition. This may be due to the fact that moisture movement is much faster that chloride diffusion.

  • PDF

Performance Evaluation of Natural Jute Fiber Reinforced Recycled Coarse Aggregate Concrete Using Response Surface Method (반응표면 분석법을 이용한 천연마섬유보강 순환굵은골재 콘크리트의 성능 평가)

  • Jeon, Ji Hong;Kim, Hwang Hee;Kim, Chun Soo;Yoo, Sung Yeol;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.4
    • /
    • pp.21-28
    • /
    • 2014
  • In this study, evaluated ware the strength and durability of the vegetated water purification channel concrete to which recycled aggregates, hawang-toh and jute were applied. Box-Behnken method of response surface analysis in statistics was applied to the experimental design. Experimental variables are as follows, recycled coarse aggregates, hawang-toh, blast-furnace slag and jute fiber. In the experiment, conducted were the tests of compressive strength, chloride ion penetration, abrasion resistance and impact resistance the replacement rate effects of the recycled aggregates, blast-furnace slag and hwang-toh on the performance of vegetated water purification channel concrete were analyzed by using the response surface analysis method on the basis of the experimental results. In addition, an optimum mixing ratio of vegetated water purification channel concrete was determined by using the experimental results. The optimum mixing ratio was determined to be in 10.0% recycled coarse aggregates, 60.0% blast-furnace slag, 10.1% hwang-toh and 0.16% jute fiber. The compressive strength, chloride ion penetration, abrasion rate, and impact number of fracture test results of the optimum mixing ratio were 24.1 MPa, 999 coulombs, 10.30 g/mm3, and 20 number, respectively.

Numerical technique for chloride ingress with cover concrete property and time effect

  • Lee, Bang Yeon;Ismail, Mohamed A.;Kim, Hyeok-Jung;Yoo, Sung-Won;Kwon, Seung-Jun
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.185-196
    • /
    • 2017
  • Durability problems initiated from steel corrosion are unseen but critical issues, so that many researches are focused on chloride penetration evaluation. Even if RC (Reinforced Concrete) structures are exposed to normal environment, chloride ingress varies with concrete surface conditions and exposed period. This paper presents an analysis technique for chloride behavior evaluation considering time effect on diffusion and surface conditions assumed as double-layered system. For evaluation of deteriorated surface condition, field investigation was performed for concrete pavement exposed to deicing agent for 18 years. In order to consider enhanced surface concrete, chloride profiles in surface-impregnated concretes exposed to chloride attack for 2 years from previous research were investigated. Through reverse analysis, effectively deteriorated/enhanced depth of surface and the related reduced/enlarged diffusion coefficient in the depth are simulated. The proposed analysis technique was evaluated to handle the chloride behavior more accurately considering changes of chloride ingress within surface layer and decreased diffusion coefficient with time. For the concrete surface exposed to deicing agent, the deteriorated depth and enlarged diffusion coefficient are evaluated to be 12.5~15.0 mm and 200% increasing diffusion coefficient, respectively. The results in concrete containing enhanced cover show 10.0~12.5 mm of impregnated depth and 85% reduction of chloride diffusion in tidal and submerged conditions.

An Experimental Study on the Diffusion of Chloride Ion in Mortar using Mineral Admixtures (혼화재 사용 모르터의 염분 확산에 대한 실험적 연구)

  • 문한영;김성수;류재석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.181-186
    • /
    • 1994
  • The steel in concrete structures under the environment of seawater easily corrode as the seawater penetrate into concrete. The purpose of this study is to analysis the properties of chloride diffusion in mortar using mineral admixtures, as a part of study to examine the chloride penetration of concrete. The results show that the chloride diffusion in mortar increased with higher water-cement ratio. In the case of mortar using mineral admixtures the scope of diffusion coefficient$(\times10^{-8}cm^2/sec)$increased SF20(0.9), SG60(3.3), FA20(3.9), and OC(6.1) in order at the same water-cement ratio 50%.

  • PDF

Analysis on Adsorption Rate & Mechanism on Chloride Adsorption Behavior with Cement Hydrates (시멘트 수화물의 염소이온 흡착거동에 따른 메커니즘 및 해석기법)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.85-92
    • /
    • 2015
  • The chloride ions, responsible for the initiation of the corrosion mechanism, intrude from the external medium into the concrete. A part of the intruding chloride ions will be retained by the hydration products of the binder in concrete, either through chemical adsorption or by physical adsorption. Since the hydration products of cement are responsible for the chloride binding in concrete, this study focused on the chloride binding in individual hydrate. The purpose of this study is to explore the time dependant behaviors of chloride ions adsorption with cement hydrates, focused on its mechanism. AFt phase and CH phase were not able to absorb chloride ion, however, C-S-H phase and AFm phase had a significant chloride adsorption capacity. In particular, AFm phase showed a chemical adsorption with slow rate in 40 days, while C-S-H phase showed binding behaviors with 3 stages including momentary physical adsorption, physico-chemical adsorption, and chemical adsorption. Based on the results, this study suggested theoretical approach to depict chloride adsorption behavior with elapsed time of C-S-H phase and AFm phase effectively. It is believed that the approach suggested in this study can provide us with a good solution to understand the mechanism on chloride adsorption with hydrates and to calculate a rate of chloride penetration with original source of chloride ions, for example, marine sand at initial time or sea water penetration later on.

A Study on the Development of Corrosion Prediction System of RC Structures due to the Chloride Contamination (염해를 받는 철근콘크리트 구조물의 철근부식시기 예측시스템 개발에 관한 연구)

  • Kim, Do-Gyeum;Park, Seung-Bum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.1
    • /
    • pp.121-129
    • /
    • 2000
  • In general. service life of the sea-shore concrete structures is largely influenced by the corrosion of reinforcing steel due to the chloride contamination, and the penetration of chloride ions into concrete is governed by concrete condition state as a micro-structure. In this study, characteristics of chloride diffusion in concrete are analyzed in accordance with the mixing properties and durability of concrete, by considering the facts that micro-structure of concrete varies with the mixing properties and can indirectly be analyzed by using the durability test. In order to predict the service life of existing concrete structures, chloride diffusion equation for the concrete structures under various service conditions and the major parameters used in that equation are formulated as the mathematical models. Based on the results of chloride diffusion analysis in accordance with the mixing properties and durability of concrete and mathematical models formulated in this study, a prediction system is developed to predict the corrosion initiation of reinforcing steel in the sea-shore concrete structures.

  • PDF