• Title/Summary/Keyword: Chloride penetration

Search Result 557, Processing Time 0.031 seconds

An Experimental Study on the Penetration of Chloride Ions to Concrete Subjected to Wetting and Drying Conditions (건습반복을 받는 콘크리트의 염소이온 침투에 관한 실험적 연구)

  • Kim Eun-Kyum;Choi Young-Kyu;Kim Seung-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.838-841
    • /
    • 2004
  • This paper presents the experimental results on the penetration of chloride. ions to ordinary portland cement concrete which is subjected to 2 different artificial environments; consecutive digestion, wetting at $3\%$ NaCl for 1 day and then drying at $40^{\circ}C$ oven for 4 days. The water-cement ratio was $35\%,\;45\%,\;55\%$. Test results showed that the intrusion depth and concentration of chloride ions penetrated into concrete in repeated wetting-drying environments were respectively deeper and higher than those of consecutive digestion environment. The penetration of chloride ions deeply depend on the effect of water to cement ratio.

  • PDF

Influence of Curing-Form Material on the Chloride Penetration of Off-Shore Concrete

  • Park, Sangjun;Choi, Yeol
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.4
    • /
    • pp.251-256
    • /
    • 2012
  • This paper presents an experimental study on the pore and penetration of chloride in seashore concrete depending on types of curing forms. Three types of concretes (Plain concrete, MSF concrete and FA concrete) with four different form types (wood, coating wood, steel and polypropylene film) were examined. The test results show that the air volume in concrete was relatively higher with steel and polypropylene forms than others, and wood form shows the least air volume. The penetration of chloride depending on type of form is showed a wide variability, that is, the values on plain concrete, MSF concrete and FA concrete are 115.2, 125.5 and 121.6 %, respectively. Based on the present study, concrete should be considered the conditions of curing form-type for durable concrete.

Effect of Concrete Coating Materials for the Improvement of Concrete Durability (콘크리트 표면도장에 의한 내구성증진 효과)

  • 문한영;김성수;안태송;김홍삼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.433-436
    • /
    • 1999
  • Long-term durability of the reinforced concrete structures exposed to marine environment deteriorates seriously by the attack of the chloride ion from see water results in corrosion of steel reinforcement in concrete. Their coating effect is aluminum oxide-isocyanate-based coating material, resistance of chloride penetration, carbonation and freezing and thawing resistance were compared to acryl-based coating material and sealer type o waterproofing material. Aluminum oxide-isocyante-based and acryl-based coating material show higher resistance to chloride penetration and carbonation than the sealer type do waterproofing material and aluminum oxide-isocyanate-based coating resist about 99% of chloride penetration. Resultants to the accelerated test for freezing and thawing, coating concrete show higher resistance than non-coating concrete, respectively.

  • PDF

An Experimental Study on the Compressive Strength and Chloride ion penetration resistance of Cement Mortar mixing Anion Exchange Resin (음이온교환수지 혼입 시멘트 모르타르의 압축강도 및 염소이온 침투 저항성에 관한 실험적 연구)

  • Jung, Do-Hyun;Lee, Yun-Su;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.23-24
    • /
    • 2018
  • Reinforced concrete is a building material that is generally used in modern society. Also, reinforced concrete structures in high salinity environments have low durability due to corrosion of reinforcing bars due to infiltrated chlorine ions. Anion exchange resins have an ability to immobilize chlorine ions in the resin while releasing their anions. As a material, it has already been shown that it is possible to fix the chloride ion inside the cementitious material through the cement mortar experiment. The purpose of this study is to confirm the compressive strength of cement mortar using powdered anion exchange resin after powdering an anion exchange resin. In order to confirm the chloride ion fixation ability of the powder anion exchange resin, chlorine ion penetration resistance test was carried out.

  • PDF

Characteristics of Chloride Penetration with Deicer Types (제설제 종류에 따른 염화물 침투 특성)

  • Choi, Yoon-Suk;Kim, Kang-Rea;Kim, Myung-Yu;Yang, Eun-Ik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.549-552
    • /
    • 2006
  • Deicing salt has been generally used for prevention of a road freezing in winter, and the amount is increasing every year. However, deicing salt may induce the decrease of bond strength, surface scaling, and environmental pollution, etc. The purpose of this paper is to suggest the fundamental data on safety and durability for concrete structures through the estimation of characteristics of chloride penetration with deicer types. According to the test results, as age of concrete is increased, chloride penetration depth is also increased independent of deicer types. However, there is no remarkable difference between deicer types. And when the estimation of chloride diffusion is carried out by immersion test, diffusion coefficient is decreased with ages, and short-term estimation may overestimate the coefficient.

  • PDF

Experimental Study on Chloride Penetration into Concrete under Combined Exposure Conditions of Chlorides and High Concentrated Sulfates (고농도 황산염 이온이 함께 존재하는 경우의 염소이온 침투특성에 관한 실험 연구)

  • Oh, Byung-Hwan;Jung, Sang-Hwa;Jiang, Yi-Rong;Kim, Jee-Sang
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.173-182
    • /
    • 2003
  • Recently, the durability of concrete structures has received great attention as the number of sea-side structures, such as new airport, bridges, and nuclear power plants, increases continuously. In this regards, many studies have been done on the chloride attack in concrete structures. However, those studies were confined mostly to the single deterioration due to chloride only, although actual environment is rather of combined type. The purpose of the present study is, therefore, to explore the effects of combined deterioration due to chlorides and sulfates in concrete structures. To this end, comprehensive experimental program has been set up to observe the chloride penetration behavior for various test series. The test results indicate that the chloride penetration is more pronounced for the case of combined attack than the case of single chloride attack. The surface chloride content is found to increase with time and the diffusion coefficient for chloride is found to decrease with time. The prediction equations for surface chloride content and diffusion coefficient were proposed according to test results. The equations for chloride penetration considering the time-dependent diffusion coefficients and surface chlorides were also suggested. The present study allows more realistic assessment of durability for such concrete structures which are subjected to combined attacks of chlorides and high concentration sulfates but the future studies for combined environment will assure the precise assessment.

Chloride Ion Penetration Resistance of Slag-replaced Concrete and Cementless Slag Concrete by Marine Environmental Exposure (해양환경 폭로에 의한 슬래그 치환 콘크리트 및 슬래그 콘크리트의 염화물 이온 침투 저항성)

  • Lee, Bo-Kyeong;Kim, Gyu-Yong;Kim, Gyeong-Tae;Shin, Kyoung-Su;Nam, Jeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.299-306
    • /
    • 2017
  • In this research, it was examined chloride ion penetration resistance of slag-replaced concrete and cementless slag concrete considering marine environmental exposure conditions of splash zone, tidal zone and immersion zone. In the design strength of grade 24 MPa, the specimens were tested to determine their compressive strength, scanning electron microscopy images and chloride migration coefficient. Further, chloride ion penetration depth and carbonation depth of specimens exposed to marine environment were measured. Experimental results confirm that chloride migration coefficient of specimens tended to decrease with increasing the replacement ratio of ground granulated blast-furnace slag in accelerated laboratory test. In addition, the specimens exposed to the tidal zone were found to be the greatest chloride ion penetration depth compared to splash zone and immersion zone. On the other hand, the chloride ion penetration depth of the specimens exposed to splash zone tended to increase with increasing the replacement ratio of ground granulated blast-furnace slag in contrast with the results for the tidal zone and immersion zone.

Influence of Carbonation and Freezing-thawing on the Chloride Diffusion in Concrete (탄산화 및 동결융해 현상이 콘크리트 중의 염소이온 확산에 미치는 영향 연구)

  • Kim, Dong-Baek;Kwon, Ki-Jun;Jung, Sang-Hwa;Bok, Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.3 s.81
    • /
    • pp.57-64
    • /
    • 2007
  • Recently, the corrosion of concrete structures has received great attention related with the deterioration of sea-side structures, such as new airport, bridges, and nuclear power plants. In this regards, many studies have been done on the chloride attack in concrete structures. However, those studies were confined mostly to the single deterioration due to chloride only, although actual environment is rather of combined type. The purpose of the present study is, therefore, to explore the influences of carbonation and freezing-thawing action to chloride attack in concrete structures. The test results indicate that the chloride penetration is more pronounced than the case of single chloride attack when the carbonation process is combined with the chloride attack. It is supposed that the chloride ion concentration of carbonation region is higher than the sound region because of the separation of fixed salts. Though the use of fly ash pronounces the chloride ion concentration in surface, amounts of chloride ion penetration into deep region decreases with the use of fly ash. The small reduction of relative dynamic elastic modulus induced from freezing-thawing increases the chloride ion penetration depths much. The present study allows more realistic assessment of durability for such concrete structures which are subjected to combined attacks of both chlorides and carbonation or freezing-thawing but the future studies for combined environment will assure the precise assessment.

A Study on the Chloride ion Penetration Characteristic of Concrete containing Ground Granulated Blast Furnace Slag (고로슬래그미분말 치환 콘크리트의 염화물 침투특성에 관한 연구)

  • 김현수;지남용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.997-1002
    • /
    • 2001
  • There are two types of chloride in concrete; one is added as concrete materials' chloride when concrete's mixing, and .the other is penetrated from the air and sea water in the sea-shore area. These chlorides penetrate into concrete, and they are accumulated inside the concrete with aging. This study aimed to evaluate the chloride ion penetration resistance of concrete containing GGBFS in the sea-shore area. Therefore, the specimens made with the replacement ratios(0, 0.30, 0.45, 0.60) of GGBFS were put into 3% NaCl solution according to the chloride accelerating test of JCI-SC3, and then investigated the weight changes, compressive strength, chloride ion with the depths of the specimens by aging. The result is that the diffusion coefficient of chloride ion is decreased with the increase of replacement ratios when compared to OPC

  • PDF

Effect of Water-Cement Ratio and Aging on the Characteristics of Chloride Ions Diffusion in Concrete (물-시멘트비와 재령이 콘크리트의 염소이온 확산특성에 미치는 영향)

  • 배수호;정영수;김진영;하재담;심은철;임병탁
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.737-742
    • /
    • 2002
  • The chief factors for the penetration and diffusion of chloride ions in concrete are water-cement ratio(w/c), aging, thickness of cover concrete, chloride ions concentration of given environment, wet and dry conditions and etc. In this study, effect of w/c and aging on the characteristics of chloride ions diffusion in concrete were researched when environmental factors for the penetration and diffusion of chloride ions were constant. For this purpose, the voltages passing through the diffusion cell were measured by using accelerated test method using potential difference, and then diffusion coefficients of chloride ions by using Andrade's method were estimated for 44%, 49.5% and 55% of w/c, respectively. As a result, correlation among diffusion coefficients of chloride ions, w/c and aging were concluded through multiple regression model.

  • PDF