• Title/Summary/Keyword: Chloride ion attack

Search Result 108, Processing Time 0.026 seconds

Durability of Hydrophilic Alkali Silicate Impregnant of Concrete Structure (알칼리 실리케이트계 침투성 콘크리트 표면보호재의 내구특성)

  • Song, Hun;Lee, Jong-Kyu;Chu, Yong-Sik;Kim, Young-Yup
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.91-94
    • /
    • 2007
  • It is essential every concrete structure should continue to perform its intended functions, that is maintain its required strength and durability, during the service life. However, deterioration occurs more progressively from the outside of concrete exposed to severe conditions. Deterioration in the concrete structure is due to carbonation and chloride ion attack. Therefore, concrete structure is needed to surface protection for increase durability using impregnant. Impregnant classify into two large groups in polymeric and silicate materials. Silicate impregnant is included silane and alkali silicate(sodium and lithium silicate). Thus, this study is concerned with carbonation and chloride ion resistance of self cleaning hydrophilic impregnant of concrete structure using lithium and potassium silicate. From the experimental test result, lithium and potassium silicate have a good properties as a carbonation and chloride ion resistance. Lithium and potassium silicate make good use of hydrophilic impregnant.

  • PDF

Chloride Ion Diffusion Coefficient and Compressive Strength of the Concrete Produced by Ready Mixed Concrete Company in Busan (부산지역 레미콘사의 콘크리트의 압축강도와 염소이온 확산계수)

  • Park, Dong-Cheon;Bang, Jung-Suk;Kim, Yong-Ro;Lee, Tae-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.11-12
    • /
    • 2017
  • The properties of concrete produced by ready mixed concrete company in Busan were tested. Because the concrete was mixed with blast furnace slag and fly ash, the compressive strength and chloride ion diffusion coefficient were lower than OPC concrete even though the specified concrete strength was same. If the durability about salt attack were satisfied, the concrete of lower specified concrete strength would be adopted to concrete mixing design.

  • PDF

Estimation on the Durability of High-Strength Concrete using Metakaolin (Metakaolin 혼합 고강도 콘크리트의 내구특성 예측)

  • Lee, Sang-Ho;Moon, Han-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.173-180
    • /
    • 2005
  • Metakaolin is a cementitious material for producing high-strength concrete. This material is now used as substitute for silica-fume. In this paper, we did the mechanical and durability test such as compressive/tensile/flexural strength test, chloride ion diffusion, chemical attack and repeated freezing and thawing, carbonation test. In the mechanical tests, 10~15% for binder is optimum substitute rate. And, in the chloride ion diffusion test, according to the increase of substitute of metakaolin & silica-fume for binder, the diffusion coefficient was more reduced. In the chemical attack test, by the filler effect of fine powder such metakaolin and silica-fume, the resistance is more excellent than normal concrete. In the other durability test, the concrete using metakaolin also compared with those of silica-fume substitute concrete. Through these tests, we recognized that metakaolin can be used as a substitute for silica-fume.

Evaluation of Durability of Cement Matrix Replaced with Ground Calcium Carbonate (중질탄산(重質炭酸)칼슘을 혼합(混合)한 시멘트 경화체(硬化體)의 내구특성(耐久特性) 평가(評價))

  • Jung, Ho-Seop;Lee, Seung-Tae;Kim, Jong-Pil;Pak, Kwang-Pil;Kim, Seong-Soo
    • Resources Recycling
    • /
    • v.15 no.3 s.71
    • /
    • pp.74-80
    • /
    • 2006
  • In this article, we would like to investigate a durability characterization of cement mortar with inert filler, which is ground calcium carbonate(GCC). The kinds of techniques to evaluate cement mortar are chloride ion ingress, carbonation and sulfate attack. For the experimental result of the resistance of chloride ion ingress, carbonation and sulfate attack, as the addition of GCC makes decreasing the permeability by micro-filler effect, the specimens of $5{\sim}15%$ ratio of replacement are superior to the GCC0 mortar specimen with respect to durability of cement matrix in this scope.

The Chloride Ion Diffusivity of Ready-Mixed Concrete Depending on Specified Compressive Strength (레디믹스트 콘크리트의 설계기준 압축강도별 염소이온 확산특성)

  • Park, Dong-Cheon;Kim, Yong-Ro
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.543-550
    • /
    • 2018
  • The RC buildings which are constructed on the seaside are followed by KBC(2016) to achieve the minimization of durability damage. To control the corrosion of the reinforcing steel bar by salt attack, W/C should be under 0.4 and specified concrete strength is higher than 35MPa in the concrete/building construction standard specification. Even though it has been proved that the concrete mixed with mineral admixture such as blast furnace slag and fly ash etc. have high strength and durability in previous researches, the beneficial informations are not applied to the codes. Ready-mixed concretes which usually include the admixtures in Busan were tested to certify the salt attack durability. In the same specified concrete strength, remarkable salt attack durability was evaluated in comparison to OPC. For economical and reliable durability design, chloride ion diffusivity should be measured before applying to new building construction.

Evaluation of Testing Method for Quality Control of Chloride Diffusivity in Concrete under chloride attack environment (콘크리트 구조물의 염해 내구성능 검토를 위한 현장 품질관리 시험법 검토)

  • Kim, Hong-Sam;Cheong, Hai-Moon;Ahn, Tae-Song;Kim, Cheol-Ho;Geon, Byung-Sub
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.973-976
    • /
    • 2008
  • Recently, it is increasingly reported that the deterioration of concrete structure under marine environments is due to diffusion and penetration of chloride ions. It is very important to estimate the diffusion coefficient of chloride ion in concrete. Estimation methods of chloride diffusivity by concentration difference is time-consuming. Therefore, chloride diffusivity of concrete is mainly conducted by electrically accelerated method, which is accelerating the movement of chloride ion by potential difference. However, there has not been any proper method for field quality control to closely determine the diffusion coefficient of chloride ion through accelerated tests using potential difference. In this paper, the various test methods for determination of chloride diffusion coefficient in concrete were investigated through comparison accelerated tests. From the results of estimated diffusion coefficient of chloride ion, relationship between the ponding test and acceleration test was examined.

  • PDF

Corrosion Behavior of Cr-bearing Corrosion Resistant Rebar in Concrete with Chloride Ion Content

  • Tae, Sung Ho
    • Architectural research
    • /
    • v.7 no.1
    • /
    • pp.49-54
    • /
    • 2005
  • Conventional studies have focused on the reduction in the water-cement ratio, the use of various admixtures, etc., to ensure the durability of reinforced concrete structures against such deterioration factors as carbonation and chloride attack. However, improvement in the concrete quality alone is not considered sufficient or realistic for meeting the recent demand for a service life of over 100 years. This study intends to improve the durability of reinforced concrete structures by improvement in the reinforcing steel, which has remained untouched due to cost problems, through subtle adjustment of the steel components to keep the cost low. As a fundamental study on the performance of Cr-bearing rebars in steel reinforced concrete structures exposed to corrosive environments, The test specimens were made by installing 8 types of rebars in concretes with a chloride ion content of 0.3, 0.6, 1.2, 2.4 and $24kg/m^3$. Corrosion accelerated curing were then conducted with them. The corrosion resistance of Cr-bearing rebars was examined by measuring crack widths, half-cell potential, corrosion area and weight loss after 155 cycles of corrosion-accelerating curing. The results of the study showed that the corrosion resistance increased as the Cr content increased regardless of the content of chloride ions, and that the Cr-bearing rebars with a Cr content of 5% and 9% showed high corrosion resistance in concretes with a chloride ion content of 1.2 and $2.4kg/m^3$, respectively.

Experimental Study on Chloride Penetration into Concrete under Combined Exposure Conditions of Chlorides and High Concentrated Sulfates (고농도 황산염 이온이 함께 존재하는 경우의 염소이온 침투특성에 관한 실험 연구)

  • Oh, Byung-Hwan;Jung, Sang-Hwa;Jiang, Yi-Rong;Kim, Jee-Sang
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.173-182
    • /
    • 2003
  • Recently, the durability of concrete structures has received great attention as the number of sea-side structures, such as new airport, bridges, and nuclear power plants, increases continuously. In this regards, many studies have been done on the chloride attack in concrete structures. However, those studies were confined mostly to the single deterioration due to chloride only, although actual environment is rather of combined type. The purpose of the present study is, therefore, to explore the effects of combined deterioration due to chlorides and sulfates in concrete structures. To this end, comprehensive experimental program has been set up to observe the chloride penetration behavior for various test series. The test results indicate that the chloride penetration is more pronounced for the case of combined attack than the case of single chloride attack. The surface chloride content is found to increase with time and the diffusion coefficient for chloride is found to decrease with time. The prediction equations for surface chloride content and diffusion coefficient were proposed according to test results. The equations for chloride penetration considering the time-dependent diffusion coefficients and surface chlorides were also suggested. The present study allows more realistic assessment of durability for such concrete structures which are subjected to combined attacks of chlorides and high concentration sulfates but the future studies for combined environment will assure the precise assessment.

Analysis Technique for Chloride Behavior Using Apparent Diffusion Coefficient of Chloride Ion from Neural Network Algorithm (신경망 이론을 이용한 염소이온 겉보기 확산계수 추정 및 이를 이용한 염화물 해석)

  • Lee, Hack-Soo;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.481-490
    • /
    • 2012
  • Evaluation of chloride penetration is very important, because induced chloride ion causes corrosion in embedded steel. Diffusion coefficient obtained from rapid chloride penetration test is currently used, however this method cannot provide a correct prediction of chloride content since it shows only ion migration velocity in electrical field. Apparent diffusion coefficient of chloride ion based on simple Fick's Law can provide a total chloride penetration magnitude to engineers. This study proposes an analysis technique to predict chloride penetration using apparent diffusion coefficient of chloride ion from neural network (NN) algorithm and time-dependent diffusion phenomena. For this work, thirty mix proportions with the related diffusion coefficients are studied. The components of mix proportions such as w/b ratio, unit content of cement, slag, fly ash, silica fume, and fine/coarse aggregate are selected as neurons, then learning for apparent diffusion coefficient is trained. Considering time-dependent diffusion coefficient based on Fick's Law, the technique for chloride penetration analysis is proposed. The applicability of the technique is verified through test results from short, long term submerged test, and field investigations. The proposed technique can be improved through NN learning-training based on the acquisition of various mix proportions and the related diffusion coefficients of chloride ion.

A Study on Prediction Model of Chloride ion Permeation of Cement Mortar by Steel Powder (염해환경에서의 염화물이온 침투 예측에 관한 연구)

  • Kim, Jeong-Jin;Park, Soon-Jeon;Ko, Joo-Hwan;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.513-516
    • /
    • 2008
  • In this study the prediction model of Chloride Ion progress rate of concrete using steel powder as an addition is developed, in which the reduction of not only the diffusion rate of $Cl^-$ but also the corrosion rate by replenishment of pore by corrosion products. The model is based on the diffusions of $Cl^-$ and its reaction with $Fe^{2+}$, in chloride attack progression region. The model can also explain the characteristics of chloride ion permeation resistance of concrete that the matrix is densified due to corrosion products. The prediction by the model agreed well the experimental data in which the concrete using steel powder, and it showed the lower rate in long-term age to Chloride Ion progress rate than the concrete without steel powder. Consequently the model can predict Chloride Ion progress rate of concrete exposed in the atmosphere regardless of the water-to-cement raito, the amount of the content of steel powder, etc.

  • PDF