• Title/Summary/Keyword: Chloride induced corrosion

Search Result 112, Processing Time 0.023 seconds

Corrosion Characteristics of Steel Reinforcements Induced by Internal Chlorides in Concrete and Determination of Chloride Thresholds (콘크리트 내부염소이온에 의한 철근의 부식특성 및 임계 염소이온농도의 결정 연구)

  • 오병환;장승엽;신용석
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.193-203
    • /
    • 1999
  • The corrosion of steel reinforcements in concrete is of great concern in recent years. This study is focused on the corrosion behavior of steel bars induced by internal chlorides in concrete at early ages. The main objective of this study is to determine the chloride thresholds causing depassivation and active corrosion of steel reinforcement in concrete. To examine the threshold concentration of chloride ion, the half-cell potential, chemical composition of expressed pore solutions of concrete and the rate of corosion area of the specimens were measured. Major variables include the added amount of chlorides in concrete, types of binders, and water-to-binder ration. From the present comprehensive experimental results, the factors influencing chloride-induced corrosion are investigated, and the chloride thresholds causing active corrosion of steel bars are proposed. The present study will enable to specify the realistic chloride limit in concrete which can be used in the future technical specification.

Corrosion of Reinforcement and Its Effect on Structural Performance in Marine Concrete Structures

  • Yokota, Hiroshi;Kato, Ema;Iwanami, Mitsuyasu
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.297-303
    • /
    • 2007
  • This paper discusses the chloride-induced corrosion of reinforcement in marine concrete structures focusing on the variability in the progress of deterioration. Through tests and analyses of reinforced concrete slabs taken out from existing open-pile structures that have been in service for 30 to 40 years, the following topics were particularly discussed: variation in chloride ion profiles of concrete, variation in corrosion properties of reinforcement embedded in concrete, and influence of the reinforcement corrosion on the load-carrying capacity of the concrete slabs. As a result, their variability was found to be very large even in one reinforced concrete slab with almost the same conditions. It was also discussed how to determine the calculation parameters for prediction of decreasing in load-carrying capacity of concrete members with chloride-induced corrosion of reinforcement.

Probabilistic evaluation of chloride ingress process in concrete structures considering environmental characteristics

  • Taisen, Zhao;Yi, Zhang;Kefei, Li;Junjie, Wang
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.831-849
    • /
    • 2022
  • One of the most prevalent causes of reinforced concrete (RC) structural deterioration is chloride-induced corrosion. This paper aims to provide a comprehensive insight into the environmental effect of RC's chloride ingress process. The first step is to investigate how relative humidity, temperature, and wind influence chloride ingress into concrete. The probability of initiation time of chloride-induced corrosion is predicted using a probabilistic model that considers these aspects. Parametric analysis is conducted on several factors impacting the corrosion process, including the depth of concrete cover, surface chloride concentration, relative humidity, and temperature to expose environmental features. According to the findings, environmental factors such as surface chloride concentration, relative humidity and temperature substantially impact on the time to corrosion initiation. The long- and short-distance impacts are also examined. The meteorological data from the National Meteorological Center of China are collected and used to analyze the environmental characteristics of the chloride ingress issue for structures along China's coastline. Finally, various recommendations are made for improving durability design against chloride attacks.

Resistance of Cementitious Binders to Chloride Induced Corrosion of Embedded Steel by Electrochemical and Microstructural Studies

  • Song, Ha-Won;Ann, Ki-Yong;Kim, Tae-Sang
    • Corrosion Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.74-80
    • /
    • 2009
  • The high alkaline property in the concrete pore solution protects the embedded steel in concrete from corrosion due to aggressive ions attack. However, a continuous supply of those ions, in particular, chlorides altogether with a pH fall in electrochemical reaction on the steel surface eventually depassivate the steel to corrode. To mitigate chloride-induced corrosion in concrete structures, finely grained mineral admixtures, for example, pulverized fuel ash (PFA), ground granulated blast furnace slag (GGBS) and silica fume (SF) have been often advised to replace ordinary Portland cement (OPC) partially as binder. A consistent assessment of those partial replacements has been rarely performed with respect to the resistance of each binder to corrosion, although the studies for each binder were extensively looked into in a way of measuring the corrosion rate, influence of microstructure or chemistry of chlorides ions with cement hydrations. The paper studies the behavior of steel corrosion, chloride transport, pore structure and buffering capacity of those cementitious binders. The corrosion rate of steel in mortars of OPC, 30% PFA, 60% GGBS and 10% SF respectively, with chloride in cast ranging from 0.0 to 3.0% by weight of binder was measured at 7, 28 and 150 days to determine the chloride threshold level and the rate of corrosion propagation, using the anodic polarization technique. Mercury intrusion porosimetry was also applied to cement pastes of each binder at 7 and 28 days to ensure the development of pore structure. Finally, the release rate of bound chlorides (i.e. buffering capacity) was measured at 150 days. The chloride threshold level was determined assuming that the corrosion rate is beyond 1-2 mA/$m^3$ at corrosion and the order of the level was OPC > 10% SF > 60% GGBS > 30% PFA. Mercury intrusion porosimetry showed that 10% SF paste produced the most dense pore structure, followed by 60% GGBS, 30% PFA and OPC pastes, respectively. It was found that OPC itself is beneficial in resisting to corrosion initiation, but use of pozzolanic materials as binders shows more resistance to chloride transport into concrete, thus delay the onset of corrosion.

Examination on Required Cover Depth to Prevent Reinforcement Corrosion Risk in Concrete

  • Yoon, In-Seok
    • Corrosion Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.157-164
    • /
    • 2012
  • In first experiment series, this paper is devoted for examining progress of reinforcement corrosion due to carbonation in concrete and to quantify uncarbonation depth to protect reinforcement from corroding. The tolerance of cover depth should be considered in order to prevent carbonation-induced corrosion. From the relationship between the weight loss of reinforcement and corrosion current density for a given time, therefore, the tolerance of cover depth to prevent carbonation-induced corrosion is computed. It is observed that corrosion occurs when the distance between carbonation front and reinforcement surface (uncarbonated depth) is smaller than 5 mm.As a secondary purpose of this study, it is investigated to examine the interaction between carbonation and chloride penetration and their effects on concrete. This was examined experimentally under various boundary conditions. For concrete under the double condition, the risk of deterioration due to carbonation was not severe. However, it was found that the carbonation of concrete could significantly accelerate chloride penetration. As a result, chloride penetration in combination with carbonation is a serious cause of deterioration of concrete.

Effects of environmental parameters on chloride-induced stress corrosion cracking behavior of austenitic stainless steel welds for dry storage canister application

  • Seunghyun Kim;Gidong Kim;Chan Kyu Kim;Sang-Woo Song
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.317-327
    • /
    • 2024
  • This study investigated the chloride-induced stress corrosion cracking (CISCC) behavior expected to occur in welds of austenitic stainless steel, which are considered candidate materials for dry storage containers for spent nuclear fuel. The behavior was studied by varying temperature, relative humidity (RH), and chloride concentration. 304L-ER308L welded plates were processed into U-bend specimens and exposed to a cyclic corrosion chamber for 12 weeks. The CISCC behavior was then analyzed using electron microscopy. A previous study by the authors confirmed that CISCC occurred in ER308L at 60 ℃, 30% RH, and 0.6 M NaCl via selective corrosion of δ-ferrite. When the temperature was lowered from 60 ℃ to 50 ℃, CISCC still occurred. However, when the humidity was reduced to 20% RH, CISCC did not happen. This can be attributed to the retardation of the deliquescence of NaCl at lower humidity, which was insufficient to promote CISCC. Furthermore, increased chloride concentration to 1.0 M resulted in the absence of CISCC and widespread surface corrosion with severe pitting corrosion because of the increase in thin film thickness.

A Study on the Prediction of Durability of Concrete Structures Subjected to Chloride Attack by Chloride Diffusion Model (염소이온의 확산모델에 의한 염해를 받는 콘크리트 구조물의 내구성 예측연구)

  • 오병환;장승엽;차수원;이명규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.254-260
    • /
    • 1997
  • Chloride-induced corrosion of reinforcement is one of the main factors which cause the deterioration of concrete structures. Durability and service lives of the concrete sturctures should be predicted in order to minimize the risk of corrosion of reinforcement. The objective of this study is to suggest the basis of analytical methods of predicting the corrosion threhold time of concrete structures. Based on the chemistry and physics of chloride ion transport and corrosion process, chloride intrusion with various exposure conditions, variability of diffusivity and transport of pore water in concrete are taken into consideration in applying finite element formulation to the predicion of corrosion threhold time. The effects of main factors on the prediction of chloride intrusion and corrosion threhold time are examined. In addition, after chloride diffusivities of several mixture proportions with different parameters are measured by chloride diffusion test, the exemplary anayses of corrosion threhold time of those mixture proportions are carried out.

  • PDF

Two Dimensional Chloride Ion Diffusion in Reinforced Concrete Structures for Railway

  • Kang, Bo-Soon;Shim, Hyung-Seop
    • International Journal of Railway
    • /
    • v.4 no.4
    • /
    • pp.86-92
    • /
    • 2011
  • Chloride ion diffusion at the corner of rectangular-shaped concrete structures is presented. At the corner of rectangular-shaped concrete, chloride ion diffusion is in two-dimensional process. Chloride ions accumulate from two orthogonal directions, so that corrosion-free life of concrete structures is significantly reduced. A numerical procedure based on finite element method is used to solve the two-dimensional diffusion process. Orthotropic property of diffusion coefficient of concrete is considered and chloride ion profile obtained from numerical analysis is used to produce transformed diffusion coefficient. Comparisons of experimental data are also carried out to show the reliability of proposed numerical analysis. As a result of two-dimensional chloride diffusion, corrosion-free life of concrete structure for railway is estimated using probability of corrosion initiation. In addition, monographs that produces transformed diffusion coefficient and corrosion-free life of concrete structure are made for maintenance purpose.

  • PDF

Fracture Analysis Considering the Non-uniform Corrosion Distribution (비선형 부식분포를 고려한 철근덮개 파괴해석)

  • 오병환;장봉석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1041-1044
    • /
    • 2001
  • This study was performed to evaluate the effect of non-uniform corrosion distribution on the analysis of concrete cover failure. A series of experiments have been undertaken to measure the corrosion rate of reinforcement according to the concentration of chloride ion so as to suggest a relationship between the reinforcement corrosion rate and chloride ion density. The corrosion induced pressure depending on the density of chloride ion has been derived. And nonlinear analysis assuming nonlinear corrosion distribution for cover cracking was achieved and compared with other experimental results to verify the accuracy of the model. Analysis was also performed for various parameters to compare their effects.

  • PDF

Prediction Model of Chloride Penetration in Concrete Bridge Deck Considering Environmental Effects (대기 환경조건을 고려한 콘크리트 교량 바닥판의 염소이온 침투 예측 모델)

  • Kim, Eui-Sung
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.59-66
    • /
    • 2008
  • Recently, the deterioration of reinforced concrete structures, primarily due to corrosion of steel reinforcement, has become a major concern. Chloride-induced deterioration is the most important deterioration phenomenon in reinforced concrete structures in harsh environments. For the realistic prediction of chloride penetration into concrete, a mathematical model was developed in which the effects of diffusion, chloride binding and convection due to water movement can be taken into account. The aim of this research was to reach a better understanding on the physical mechanisms underlying the deterioration process of reinforced concrete associated with chloride-induced corrosion and to propose a reliable method for estimating these effects. Chloride concentrations coming from de-icing salts are significantly influenced by the exposure conditions such as salt usage, ambient temperature and repeated wet-dry cycles.