• Title/Summary/Keyword: Chloride diffusion

Search Result 492, Processing Time 0.025 seconds

Characteristics on the distribution of salinity of airborne sea salt by height (높이에 따른 비래염분량의 감소 특성)

  • Lee Jong Suk;Choi Won Sung;Kim Do Gyeum;Moon Han Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.261-264
    • /
    • 2005
  • For concrete structures immersed in seawater, the concentration of chloride used to estimate the chloride diffusion coefficient can be defined as the seawater chloride concentration. However, for seashore concrete structures which are not coming into direct contact with seawater, establishing the interface concentration of chloride becomes delicate. In addition, concrete structures are greatly affected by salt attack primarily due to airborne sea salt like it can be seen through the corrosion of rebar. This study intends to investigate characteristics on the salinity of airborne sea salt by height. Salinity measurement devices were installed at height of 2, 10 and 19m on the seashore water tower located in the area of Samchuk in the Eastern coast. Analysis results of the decrease of salinity with respect to the height above the ground at a distance of 30m from the seashore showed that the reduction reached about 40$\%$ at a height of 10m and 60$\%$ at 20m.

  • PDF

Distribution properties of seasonal airborne sea salt in the seashore (해안가의 계절별 비래염분량의 분포 특성)

  • Lee, Jong-Suk;Choi, Won-Sung;Moon, Han-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.237-240
    • /
    • 2004
  • When the concrete structures are in contact with seawater, concentration of chloride for estimating chloride diffusion coefficient can be defined as the chloride concentration of sea water. However, in case the concrete structures, constructed in the seashore, aren't directly in contact with seawater, it is difficult to establish the interface concentration of chloride. In addition, marine concrete structures are greatly affected by salt attack such as rebar corrosion, among the cause of salt attack, airborne sea salt is primary factor. Therefore, in this study, salt attack environment by airborne sea salt was investigated in terms of a seasonal distribution at 33 spots, 6 areas in the East, West, South coast for 1 year. Results indicated that in the South coast, the amount of the airborne sea salt is comparatively higher in summer. in the West coast. higher in winter. On the other hand, in the East coast, the amount of the airborne sea salt is rarely affected by a season.

  • PDF

Electrocatalytic Reduction of Thionyl Chloride by Schiff Base Metal(II) Complexes (1)

  • Sin, Mi Suk;Kim, U Seong;Jo, Gi Hyeong;Choe, Yong Guk
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.3
    • /
    • pp.205-210
    • /
    • 1995
  • Catalytic effects of various Schiff base metal(II) complexes on the reduction of thionyl chloride at glassy carbon electrode are evaluated by determining the kinetic parameters from cyclic voltammetry technique. The charge transfer process is affected strongly by the concentration of catalysts during the reduction of thionyl chloride. The catalytic effects are shown by both a shift of the reduction potential for thionyl chloride toward more positive direction and an increase in peak current. The diffusion coefficient value, Do, of the 8.17 ${\times}$ 10-9 $cm^2/s$ was observed at the bare glassy carbon electrode, whereas larger values (0.9-1.09 ${\times}$ 10-8 $cm^2/s$) were observed at the catalyst supported glassy carbon electrode. Significant improvements in the cell performance have been noted in terms of both exchange rate constants and current densities at glassy carbon electrode.

An Experimental Study on the Durability Characterization using Porosity (시멘트 모르타르의 공극률과 내구특성과의 관계에 대한 실험적 연구)

  • Park, Sang Soon;Kwon, Seung-Jun;Kim, Tae Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2A
    • /
    • pp.171-179
    • /
    • 2009
  • The porosity in porous media like concrete can be considered as a durability index since it may be a routine for the intrusion of harmful ions and room for the keeping moisture. Recently, modeling and analysis techniques for deterioration are provided based on the pore structure with the significance of durability and the relationship between porosity and durability characteristics is an important issue. In this paper, a series of mortar samples with five water to cement ratios are prepared and tests for durability performance are carried out including porosity measurement. The durability test covers those for compressive strength, air permeability, chloride diffusion coefficient, absorption, and moisture diffusion coefficient. They are compared with water to cement ratios and porosity. From the normalized data, when porosity increases to 1.45 times, air permeability, chloride diffusion coefficient, absorption, and moisture diffusion coefficient decrease to 2.3 times, 2.1 times, 5.5 times and 3.7 times, respectively, while compressive strength decreases to 0.6 times. It was evaluated that these are linearly changed with porosity showing high corelation factors. Additionally, intended durability performances are established from the test results and literature studies and a porosity for durable concrete is proposed based on them.

Preparation of Storage-Stable Liquid Dyes by Membrane Separation Technology (막분리 기술을 위한 액체염료 제조에 관한 연구)

  • Cho, Jung Hee;Lee, Chung Hak
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.349-359
    • /
    • 1992
  • Studies were carried out on the selective removal of inorganic salts such as NaCl and $Na_2SO_4$ from dye solution, using counter diffusion-reverse osmosis and nanofiltration, respectivey. For the dye solution used in the experiments, 1 to 30% of salts were removed by counter diffusion while the loss of dye molecules was less than 0.3%. The separation factors by one pass operation were 10-500 according to ionic species. In five successive operations, removals of anion($Cl^-$) increased but those of cation($Na^+$) decreased due to the Donnan effect. Effects of feed flow rate on removal efficiencies of various ions were also observed at constant flow rate of stripping water. Reverse osmosis of desalted dye solution by counter diffusion was conducted to prepare highly concentrated liquid dyes. The rejection efficiency of dye molecules was greater than 99%. For the rejection efficiency of chloride ion, experimental values were compared with theoretical ones based on solution-diffusion model. Two stage diafiltration was performed in nanofiltration. The rejection efficiency of chloride ion was continuously decreased due to the Donnan dialysis and even negative rejection was observed. The Donnan effect was more pronounced in the second diafiltration.

  • PDF

Pseudo-Binary Diffusion Coefficients of Organic Aroma Component - I. The Diffusion Coefficient of Benzaldehyde in Aqueous Sugar Solution - (유기방향물질의 의사 2성분계 확산계수 - 제1보 : 설탕수용액중 Benzaldehyde의 확산계수 -)

  • Kang, An-Soo;Lee, Tae-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.315-323
    • /
    • 1982
  • The measurement of cell constant in a diaphragm-cell method is the most important factor. In order to get the correct cell constant, the diffusion coefficients of potassium chloride were measured, at various concentration and temperature of potassium chloride solution, and at the stirring rate in the cell. The pseudo-binary diffusion coefficients of organic aroma component (benzaldehyde) in sugar solution has been measured at various concentration and temperature with the cell constant obtained above. Experimental results were compared and discussed with the semi-empirical epuations from literatures. And, especially, the diffusion coefficient of benzaldehyde, $D_{ba}$ for a small solute diffusing in a viscous solvent of larger molecules is proportional to the -0.82 power of the viscosity of aqueous sugar solution, ${\mu}$ at constant temperature, $D_{ba}{\mu}^{0.82}=constant$.

  • PDF

An Efficient Chloride Ingress Model for Long-Term Lifetime Assessment of Reinforced Concrete Structures Under Realistic Climate and Exposure Conditions

  • Nguyen, Phu Tho;Bastidas-Arteaga, Emilio;Amiri, Ouali;Soueidy, Charbel-Pierre El
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.199-213
    • /
    • 2017
  • Chloride penetration is among the main causes of corrosion initiation in reinforced concrete (RC) structures producing premature degradations. Weather and exposure conditions directly affect chloride ingress mechanisms and therefore the operational service life and safety of RC structures. Consequently, comprehensive chloride ingress models are useful tools to estimate corrosion initiation risks and minimize maintenance costs for RC structures placed under chloride-contaminated environments. This paper first presents a coupled thermo-hydro-chemical model for predicting chloride penetration into concrete that accounts for realistic weather conditions. This complete numerical model takes into account multiple factors affecting chloride ingress such as diffusion, convection, chloride binding, ionic interaction, and concrete aging. Since the complete model could be computationally expensive for long-term assessment, this study also proposes model simplifications in order to reduce the computational cost. Long-term chloride assessments of complete and reduced models are compared for three locations in France (Brest, Strasbourg and Nice) characterized by different weather and exposure conditions (tidal zone, de-icing salts and salt spray). The comparative study indicates that the reduced model is computationally efficient and accurate for long-term chloride ingress modeling in comparison to the complete one. Given that long-term assessment requires larger climate databases, this research also studies how climate models may affect chloride ingress assessment. The results indicate that the selection of climate models as well as the considered training periods introduce significant errors for mid- and long- term chloride ingress assessment.

Generic studies on thermo-solutal convection of mercurous chloride system of ${Hg_2}{Cl_2}$ and Ne during physical vapor transport

  • Choi, Jeong-Gil;Lee, Kyong-Hwan;Kim, Geug-Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.1
    • /
    • pp.39-47
    • /
    • 2009
  • The effects of thermo-solutal convection on mercurous chloride system of ${Hg_2}{Cl_2}$, and Ne during physical vapor transport are numerically investigated for further understanding and insight into essence of transport phenomena, For $10\;K{\le}{\Delta}T{\le}30\;K$, the growth rate slowly increases and, then is decreased gradually until ${\Delta}T$=50 K, The occurrence of this critical point near at ${\Delta}T$=30 K is likely to be due to the effects of thermo-physical properties stronger than the temperature gradient corresponding to driving force for thermal convection. For the range of $10\;Torr{\le}P_B{\le}300\;Torr$, the rate is second order-exponentially decayed with partial pressures of component B, $P_B$. For the range of $5{\le}M_B{\le}200$, the rate is second order-exponentially decayed with a function of molecular weight of component B, $M_B$. Like the case of a partial pressure of component B, the effects of a molecular weight arc: reflected through the binary diffusivity coefficients, which are intimately related with suppressing the convection flow inside the growth enclosure, i,e., transition from convection to diffusion-dominant flow mode as the molecular weight of B increases. The convective mode is near at a ground level, i,e., on earth (1 $g_0$), and the convection is switched to the diffusion mode for $0.1\;g_0{\le}g{\le}10^{-2}g_0$, whereas the diffusion region ranges from $10^{-2}g_0$ up to $10^{-5}g_0$.

Estimation of Diffusion Coefficient and Mass Transfer Coefficient in Microwave-Assisted Drying of Paclitaxel for Removal of Residual Methylene Chloride (잔류 메틸렌 클로라이드 제거를 위한 마이크로웨이브를 이용한 파클리탁셀건조에서 확산계수 및 물질전달계수 추정)

  • Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.430-434
    • /
    • 2018
  • In this study, an effective diffusion coefficient and mass transfer coefficient were investigated in microwave-assisted drying of paclitaxel for removal of residual methylene chloride. At all the temperatures (35, 45, and $55^{\circ}C$), a large amount of the residual methylene chloride was initially removed during the drying, and the drying efficiency increased when increasing the drying temperature. The effective diffusion coefficient ($1.299{\times}10^{-13}{\sim}2.571{\times}10^{-13}m^2/s$) and mass transfer coefficient ($1.625{\times}10^{-11}{\sim}4.857{\times}10^{-11}m/s$) increased with increasing drying temperature. The small Biot number (0.0100~0.0151) indicated that the process of mass transfer was externally controlled.

Evaluation of Chloride Penetration in Concrete with Ground Granulated Blast Furnace Slag considering Fineness and Replacement Ratio (고로슬래그 미분말 콘크리트의 분말도 및 치환율에 따른 염해 저항성 평가)

  • Lee, Hyun-Ho;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.26-34
    • /
    • 2013
  • Durability performance in RC structures varies significantly with changes in cover depth and mix proportions. GGBFS (Ground Granulated Blast Furnace Slag) is very effective mineral admixture and widely used for an improved resistance to chloride attack. In this paper, characteristics such as porosity, compressive strength, and diffusion coefficient are evaluated in GGBFS concrete with 30~70% of replacement ratio and $4,000{\sim}8,000cm^2/g$ of fineness. Through the tests, more dense pore structure, higher compressive strength, and lower diffusion coefficient are obtained in GGBFS concrete, which are evaluated to be more dependent on replacement ratio than fineness. With increasing curing period from 3 to 91 days, porosity decreases to 77.47% and strength increases to 373% in GGBFS concrete. Chloride diffusion coefficient in GGBFS concrete decreases to 64.4% compared with that in OPC concrete, which shows significant improvement of durability performance.