• Title/Summary/Keyword: Chloride Ion Penetration

Search Result 290, Processing Time 0.025 seconds

Scaling Deterioration of Concrete due to Deicing Salt (동결방지제에 의한 콘크리트의 스케일링 열화)

  • Kim, Gyu-Yong;Park, Chan-Kyu;Kim, Han-Jun;Sohn, Yu-Shin;Lee, Seung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.177-180
    • /
    • 2005
  • Decing agent with chloride promote frost damage of concrete structure in winter period. From the safetyside, however, it is difficult to stop using chloride. Therefore, the durable concrete is required from now on. In this paper, long-term freezing and thawing test was carried out using the freezing water containing $CaCl_{2}$ to consider the concrete scaling according to the kind of binders, such as OPC, Flyash, Slag+Fa. and Slag As a result, it was found that the degree of scaling is different with containing slag being considered to prevent the penetration chloride ion and according to each binders.

  • PDF

Temperature effect on multi-ionic species diffusion in saturated concrete

  • Damrongwiriyanupap, Nattapong;Li, Linyuan;Limkatanyu, Suchart;Xi, Yunping
    • Computers and Concrete
    • /
    • v.13 no.2
    • /
    • pp.149-171
    • /
    • 2014
  • This study presents the mathematical model for predicting chloride penetration into saturated concrete under non-isothermal condition. The model considers not only diffusion mechanism but also migration process of chloride ions and other chemical species in concrete pore solution such as sodium, potassium, and hydroxyl ions. The coupled multi-ionic transport in concrete is described by the Nernst-Planck equation associated with electro-neutrality condition. The coupling parameter taken into account the effect of temperature on ion diffusion obtained from available test data is proposed and explicitly incorporated in the governing equations. The coupled transport equations are solved using the finite element method. The numerical results are validated with available experimental data and the comparison shows a good agreement.

Prediction of bond strength between concrete and rebar under corrosion using ANN

  • Shirkhani, Amir;Davarnia, Daniel;Azar, Bahman Farahmand
    • Computers and Concrete
    • /
    • v.23 no.4
    • /
    • pp.273-279
    • /
    • 2019
  • Corrosion of the rebar embedded in concrete has a fundamental role in the determination of life and durability of the concrete structures. Researches have demonstrated that artificial neural networks (ANNs) can effectively predict issues such as expected damage in concrete structures in marine environment caused by chloride penetration, the potential of steel embedded in concrete under the influence of chloride, the corrosion of the steel embedded in concrete and corrosion current density in steel reinforced concrete. In this study, data from different kind of concrete under the influence of chloride ion, are analyzed using the neural network and it is concluded that this method is able to predict the bond strength between the concrete and the steel reinforcement in mentioned condition with high reliability.

A Study on Durability of Concrete According to Mix Condition by Marine Environment Exposure Experiment (해양환경폭로실험을 통한 배합조건별 콘크리트의 내구성에 관한 연구)

  • Jo, Young-Jin;Choi, Byung-Wook;Choi, Jae-Seok;Jung, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4542-4551
    • /
    • 2013
  • Recently, much attention has focused on the study of eco-friendly concrete using recycled by-products for protecting marine ecosystem and durability of concrete exposed to marine condition. This study evaluated the durabilities of 4 different type of concrete mixtures(Control, Marine, Porous, New slag) with the seawater resistance by marine environment exposure experiment and freeze-thaw resistance, resistance to chloride ion penetration considering severe deterioration environment. In this study, we conducted seawater resistance using compressive strength according to the age(7/28/56 days) of specimen and curing conditions(standard(fresh water), tidal, immersion, artificial seawater). The results show that compressive strength of concrete exposed to marine environment exposure condition was lower than those of the standard curing condition. Also, compressive strength of New slag using eco-friendly materials for protecting marine ecosystem was lower than those of other concretes, there is need to improve the performance of New slag. The results for freeze-thaw resistance showed that all mixtures have excellent, but the Porous and New slag were lower than others. Also, the more improved resistance to chloride ion penetration than those of the Marine was measured in the New slag regardless of curing condition.

Evaluation of Chloride Ion Penetration Resistance of High Calcium Silicate Cement Concrete (High Sulfated Calcium Silicate 시멘트 콘크리트의 염소이온침투저항성 평가)

  • Jeong, Seok-Man;Yang, Wan-hee;Kim, Hyeon-Soo;Lee, Gun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.1
    • /
    • pp.35-43
    • /
    • 2022
  • The aim of this work was to a comparative review the performance of high calcium silicate cement (HSCSC) and that of ordinary Portland cement(OPC) and blast furnace slag cement(S/C). The result of the compressive test confirmed that the compressive strength development rate of high calcium silicate cement concrete at the age of 3 days was 73.6% that of ordinary Portland cement concrete. However, at the age of 28 days, the strength development rate of high calcium silicate cement increased to about 107.0% compared to ordinary Portland cement. In addition, the test of the chloride ion penetration resistance of concrete showed that at the age of 28 days, the passed charge decreased by 73.4% and 93.0%, respectively, in blast furnace slag cement and high calcium silicate cement compared to ordinary Portland cement, and at the age of 56 days, it decreased by 79.1% and 98.3%, exhibiting excellent resistance to chloride ion penetration. In particular, it was confirmed that the rate of decrease in the passed charge with age was higher in high calcium silicate cement than in ordinary Portland cement and blast furnace slag cement.

The Mechanical Properties of Concrete Using Blended Super Low Heat Cement (혼합형 초저발열 시멘트를 사용한 콘크리트의 물성-현수교 앵커리지 콘크리트 대상-)

  • 송용순;강석화;손명수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.341-344
    • /
    • 1999
  • In the case of the offshore concrete structures like the anchorage block of a suspension bridge of Kwangan Grand Road, there is a need of the concrete which has low heat of hydration and good resistance for sea-water attack. In this study, the blended super low heat cement which satisfies that requirement was developed and several tests were carried out. The concrete using the blended super low heat cement showed lower adiabatic temperature rise than 3$0^{\circ}C$ and good early strength. Also, its passed charge(coulomb) to resist chloride ion penetration was very low.

  • PDF

Properties of Polymer-Modified Mortars Using Ground Granulated Blast-Furnace Slag (고로슬래그 미분말을 혼입한 폴리머 시멘트 모르타르의 성질)

  • 주명기;연규석;이윤수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.1035-1040
    • /
    • 2001
  • The effects of polymer-binder ratio and slag content on the properties of combined wet/dry-cured polymer-modified mortars using granulated blast-furnace slag (slag) are examined. As a result, the flexural and compressive strengths of polymer-modified mortar using slag reaches a maximum at a slag content of 40%, and is inclined to increase with increasing polymer-binder ratio. The water absorption, carbonation depth and chloride ion penetration depth tend to decrease with increasing polymer-binder ratio and slag content.

  • PDF

An Experimental Study on the Low Permeability Concrete with the Marine Wastes (해양폐기물을 이용한 수밀콘크리트 개발에 관한 연구)

  • 백신원;김인배
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.05a
    • /
    • pp.74-79
    • /
    • 2003
  • Many marine wastes such as seaweeds are casted aside at the seasides. So, the objective of this study is to apply the marine wastes to the concrete. To this end, mortar and concrete tests with the marine wastes have been conducted. The results of the present mortar and concrete tests indicate that the mortar and concrete with marine wastes admixtures exhibits very low permeability. The present study provides a firm base for the use of very low permeable concrete and the application of the marine structures and the submerged structures.

  • PDF

Analysis of Chloride ion Penetration of Marine Concrete Structure - Part II. Application of Analysis Program- (해양 콘크리트 구조물의 염소이온 침투해석 - 개발된 프로그램의 적용 중심으로-)

  • 한상훈
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.280-286
    • /
    • 2002
  • 염소이온 확산해석을 실제 구조물에 대해서 수행하기 위해서는 여러 변수들에 대한 값들이 필요하다. 이러한 변수들에 대한 값들은 적용 배합에 대한 실험을 통해 직접 측정할 수도 있지만 설계 단계에서 염해에 의한 내구성을 평가를 위해 실험을 수행하기가 실용적인 관점에서 매우 어렵다. (중략)

  • PDF

Analysis of Chloride ion Penetration of Marine Concrete Structure - Part 1. Development of Analysis Program- (해양 콘크리트 구조물의 염소이온 침투해석 - 해석 프로그램의 개발 중심으로-)

  • 한상훈;박우선
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.122-129
    • /
    • 2002
  • 근래에 건설공간의 부족과 교통의 편리함으로 인해 해양 콘크리트 구조물의 건설이 증가하고 있다. 이러한 해양 콘크리트 구조물의 내구성에 가장문제가 되는 것이 염해에 의한 철근의 부식이다 염해에 의해 철근이 부식하게 되면 구조물의 안전성이나 사용성에 큰 악영향을 미치게 된다. (중략)

  • PDF