• Title/Summary/Keyword: Chloride Ion

Search Result 1,128, Processing Time 0.025 seconds

An experimental study on surface performance improvement of concrete influencing on resistance to chloride (콘크리트의 표면성능개선이 염소이온투과저항성에 미치는 영향에 관한 실험적 연구)

  • Kim, Jae-Sung;Kang, Suk-Pyo;Hong, Sung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.782-785
    • /
    • 2004
  • Salt attack is one of the serious deterioration factor with respect to the durability of concrete structure. Especially, in case of exposed rebar concrete structure in marine environment, corrosion of rebar is accelerated by penetration of $Cl^-$ from exterior. Through this path, volume of corroded rebar is increased about two and half times due to increased inner pressure originated from rust. As a consequence, the overall deterioration of concrete structure, namely, cracks, reduction of adhesive strength and pop-out is followed. In this paper, the effect of structure treatment of concrete on chloride resistance has been investigated. At the same time, the relationship among several characteristics, such as resistance to chloride, water absorption coefficient and surface hardness of concrete has been investigated. It is believed that surface performance improvement by the application of penetrative hardening agent influences on positively water absorption coefficient, surface hardness of concrete and resistance to chloride ion penetration.

  • PDF

Effect of Concrete Coating Materials for the Improvement of Concrete Durability (콘크리트 표면도장에 의한 내구성증진 효과)

  • 문한영;김성수;안태송;김홍삼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.433-436
    • /
    • 1999
  • Long-term durability of the reinforced concrete structures exposed to marine environment deteriorates seriously by the attack of the chloride ion from see water results in corrosion of steel reinforcement in concrete. Their coating effect is aluminum oxide-isocyanate-based coating material, resistance of chloride penetration, carbonation and freezing and thawing resistance were compared to acryl-based coating material and sealer type o waterproofing material. Aluminum oxide-isocyante-based and acryl-based coating material show higher resistance to chloride penetration and carbonation than the sealer type do waterproofing material and aluminum oxide-isocyanate-based coating resist about 99% of chloride penetration. Resultants to the accelerated test for freezing and thawing, coating concrete show higher resistance than non-coating concrete, respectively.

  • PDF

Investigation on the Properties of Mortar U sing Chloride Attack Protection Agent (염해방지제 사용에 따른 모르타르의 특성 검토)

  • Bae, Jun-Young;Kim, Jong-Back;Lee, Keon-Ho;Cho, Sung-Hyun;Kim, Kyoung-Min;Park, Sang-Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.297-298
    • /
    • 2009
  • In this paper, it was to investigate different types of mortar properties using a chloride attack protection agent by evaluating mixing ratio of this particular agent, including 3% increments. The results showed that the compressive strength and chloride ion penetration resistance of mortar by using chloride attack protection agent were improved than non-added mortar.

  • PDF

Evaluation of Apparent Chloride Diffusivity of Types of Concretes (콘크리트 종류별 겉보기 염소이온 확산특성 평가)

  • 문한영;김홍삼;최두선;이승훈;손유신
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.74-77
    • /
    • 2003
  • This paper investigated the apparent chloride diffusivity of various concretes. Ten mixtures of concrete were initially prepared and tested to estimate diffusion property. The penetration depth and concentration of chloride ion were examined at the same water-binder ration. The binders were composed of normal portland cement, fly ash, ground granulated blast-furnace slag, and silica fume. From the results, it was concluded that using the mineral admixtures had a filling effect on the pore structure of cements matrix due to those pozzoanic reaction with the hydrates of cement, which increases the tortuosity of pore and makes large pore finer. And diffusivity of chloride is following: NPC100 > F10N90 > F30N70 > F20N80 > F20S05 > G30N70 > F10S05 > G30S05 > G30F15 > G50N50.

  • PDF

A Study on the Chloride Attack Resistance of Marine Concrete by Accelerated Deterioration Test of Artificial Seawater (인공해수촉진열화시험에 의한 해양콘크리트의 내염특성에 관한 연구)

  • Lee, Jun;Seo, Jung-Pil;Cho, Sung-Hyun;Bae, Jun-Young;Park, Sang-Joon;Kim, Kyoung-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.357-358
    • /
    • 2010
  • This study was performed an evaluation of chloride attack resistance properties of marine concrete by accelerated deterioration test of artificial seawater. As the results of study, when considering the compressive strength and chloride ion penetration of concrete, the proper type to improvement of chloride attack resistance is thought to marine cement.

  • PDF

Ecological studies of the certain Halophytes on the high saline soil (고염도 토양에 있어서 몇가지 염식생식물의 생태에 대하여)

  • 홍순우
    • Journal of Plant Biology
    • /
    • v.13 no.1
    • /
    • pp.25-32
    • /
    • 1970
  • Ecological study on the reclaimed high saline soil was carried out throughout a year(1969) to elucidate the changes of the structure of halophytes communiteis and the possibilities of desalination from high saline soil by absorption of chloride ion. Results from this studies are summarized as followings; 1) The growth rates of halophytes showed a variation; maximum growth rate of Salicornia appeared on August, Chenopodium on July, Suaeda on July, Aster on August and Scirpus on June. 2) Changes of frequency of each halophyte were varied in accordance with species. Chenopodium and Salicornia have the highest frequency of all on May. However, frequency as well as density of halophytes decreased after on May due to competition for absorbing moisture in plant communities. 3) The terrestrial plants which were succeed into the reclaimed tidal land had herborized 25 species on the both side of irrigation route. 4) Each of the maximum chloride uptake by halophytes appeared on May(Salicornia and Aster), on June(Chenopodium and Scirpus), and on August(Suaeda), respectirecely 5) Among the halophytes, Salicornia was confirmed to absorb the highest amount of chloride. A possible amount of chloride uptake by all halophytes per 100 square cm reached about 24,629. ppm.

  • PDF

A Exprimental Study on the Corrosion of Reinforcing Steel in a Coastal Concrete Structure due to the Attack of Chloride Ions (염분침투에 의한 해안 콘크리트 구조물의 철근부식에 관한 실험적 연구)

  • 안상섭;김은겸;신치범;조원일;이윤한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.263-268
    • /
    • 1997
  • One of the principal causes of the deterioation of coastal concrete structures is the corrosion of reinforcing steel induced by the attack of chloride ions. An experimental study was performed to investigate the distribution of concentration of chloride ions in a coastal concrete structure and to measure the half-cell potential of embedded steel by using the copper-copper sulfate reference electrode. Quantitative analysis showed that the concentration of chloride ion in the aqueous phase near the surface of embedded steel exceeded a threshold value for corrosion, 0.05% by weight in concrete. The absolute value of half-cell potential at some members of embedded steel was measured to be higher than 350mV, indicating that the probability of corrosion is more than 90%. The prediction on corrosion based on the experimental measurements was confirmed by the observation of corrosion on the surface of steel bars in the concrete core taken out of the concrete structure.

  • PDF

A Model for the Prediction of Chloride Ions Intrusion into Concrete (콘크리트에 대한 염화물이온 침투예측모델)

  • 여경윤;김은겸;신치범;조원일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.149-154
    • /
    • 1997
  • In order to predict the onset of the corrosion of steel bars in the concrete, a mathematical model including the diffusion of chloride ion in aqueous phase of pores, the adsorption and desorption of chloride ions to and from the surface of solid phase of concrete, and the chemical reaction of chloride ions with solid phase was established. Finite element method was employed to carry out numerical analysis. The chlorides penetrating through the wall of concrete structure from the external environment and the chlorides contained in the concrete admixture were confirmed to be two important factors to determine the onset of corrosion of steel bars.

  • PDF

Stress Corrosion Cracking of Heat Exchanger Tubes in District Heating System

  • Cho, Sangwon;Kim, Seon-Hong;Kim, Woo-Cheol;Kim, Jung-Gu
    • Corrosion Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.49-54
    • /
    • 2019
  • The purpose of this paper is to present failure analysis, of the heat exchanger tube in a district heating system. SS304 stainless steel is used, as material for the heat exchanger tube. The heat exchanger operates in a soft water environment containing a small amount of chloride ions, and regularly repeats operation and standstill period. This causes concentration of chloride ions on the outer surface of the tube, as well as repeat of thermal expansion, and shrinkage of the tube. As a result of microscopic examination, cracks showed transgranular as well as branched propagation, and many pits were present, at the initiation point of each crack. Energy disperstive spectroscopy analysis showed Fe and O peak, as well as Cl peak, meaning that cracks were affected by Cl ion. Failure of the tube was caused by chloride-induced stress corrosion cracking by thermal stress, high temperature, and localized enrichment of chloride ions.

Mitigation of Steel Rebar Corrosion Embedded in Mortar using Ammonium Phosphate Monobasic as Hreen Inhibitor (제 1 인산 암모늄 사용량에 따른 시멘트 모르타르의 철근방청성능 평가에 관한 실험적 연구)

  • Tran, Duc Thanh;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.112-113
    • /
    • 2021
  • Phosphate based inhibitor is playing a decisive role in inhibiting the corrosion of steel rebar in chloride condition. We have used different amount of ammonium phosphate monobasic (APMB) as corrosion inhibitor in mortar with different amount of chloride ions. The compressive strength, flexural strength, open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), potentiodynamic polarization resistance (PPR), scanning electron microscopy (SEM) and Raman spectroscopy were performed to access the effect of inhibitor on corrosion resistance. As the amount of inhibitor is increased, the compressive strength increased. The electrochemical results show that as the amount of inhibitor and chloride ions are increased, the total impedance and corrosion resistance of steel rebar increased attributed to the formation of the stable oxide films onto the steel rebar surface. It is suggested that APMB can work in high concentration of chloride ions present in concrete where phosphate ion helps in formation of stable and protective phosphate based oxide film.

  • PDF