• 제목/요약/키워드: Chloride Ion

검색결과 1,125건 처리시간 0.025초

우레탄계와 아크릴계 도막 방수재가 도포된 바탕 모르타르의 염해 저항성 평가 (Salt damage resistance of mortar substrate coated by the urethane and acrylic waterproofing membranes)

  • 이준;미야우치 히로유키;구경모;최경철;미야우치 카오리;김규용
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.329-331
    • /
    • 2013
  • The salt damage resistance of waterproofing membrane was evaluated on the cracked mortar substrate. The types of specimens are urethane, acrylic waterproofing membrane, and no coating mortar substrate. After these specimens were cured by water curing for 4 weeks, they were cured by atmospheric curing at 20±2Co for 8 weeks. The salt water immersion test was carried out by following KS F 2737, and the penetration depth of chloride ion into substrate was measured in 1, 4, 8, and 13 weeks. As a result, in the case of non coating specimen, the chloride ion penetrated within one week. In the coated specimens, a regardless of the membrane type, the chloride ion did not penetrate during 13 weeks-tests on condition that the cracked width of substrate is less than 0.3mm. Also, the penetration speeds of the coated specimens were lower than that of non coating specimen. Therefore, our results reached a conclusion that waterproofing membrane has high salt damage resistance.

  • PDF

분극곡선 측정을 통한 전해부상조의 설계인자 평가 (Evaluation on Design Factors of Electrolytic Flotation Reactor by Measuring Polarization Curve)

  • 임봉수;김경수;최찬수
    • 한국물환경학회지
    • /
    • 제23권2호
    • /
    • pp.244-250
    • /
    • 2007
  • This study was carried out to obtain the optimum design factors for an eletrolytric flotation reactor. When the effluent of the leachate treatment facility was treated under the condition of 10 volts, 30 minutes, at the Al-Al electrode system; COD removal efficiency was 45%, and total phosphorus removal efficiency was 98%. The high removal efficiency was caused by the fact that phosphate was removed by leaching $Al^{3+}$ from two electrodes. The leachate containing high ammonium nitrogen concentration was treated by a batch test under the condition of 60 minutes reaction time and added chloride ion; ammonium nitrogen removal efficiency was 89%. This high efficiency was affected by added chloride ion to wastewater. To find the optimum current density and voltage of the leachate containing chloride ion (ratio of $Cl^-/NH_4-N$ is 11) a electrochemical polarization curve was used. These values were found to be $4.5mA/cm^2$ and about 2.1 V, respectively. When C-Al electrode system was used at a batch test, the total nitrogen removal efficiency was increased by 1.8 to 3.3 times, compared to Al-Al electrode system due to high $Cl_2$ gas production.

Consensus channelome of dinoflagellates revealed by transcriptomic analysis sheds light on their physiology

  • Pozdnyakov, Ilya;Matantseva, Olga;Skarlato, Sergei
    • ALGAE
    • /
    • 제36권4호
    • /
    • pp.315-326
    • /
    • 2021
  • Ion channels are membrane protein complexes mediating passive ion flux across the cell membranes. Every organism has a certain set of ion channels that define its physiology. Dinoflagellates are ecologically important microorganisms characterized by effective physiological adaptability, which backs up their massive proliferations that often result in harmful blooms (red tides). In this study, we used a bioinformatics approach to identify homologs of known ion channels that belong to 36 ion channel families. We demonstrated that the versatility of the dinoflagellate physiology is underpinned by a high diversity of ion channels including homologs of animal and plant proteins, as well as channels unique to protists. The analysis of 27 transcriptomes allowed reconstructing a consensus ion channel repertoire (channelome) of dinoflagellates including the members of 31 ion channel families: inwardly-rectifying potassium channels, two-pore domain potassium channels, voltage-gated potassium channels (Kv), tandem Kv, cyclic nucleotide-binding domain-containing channels (CNBD), tandem CNBD, eukaryotic ionotropic glutamate receptors, large-conductance calcium-activated potassium channels, intermediate/small-conductance calcium-activated potassium channels, eukaryotic single-domain voltage-gated cation channels, transient receptor potential channels, two-pore domain calcium channels, four-domain voltage-gated cation channels, cation and anion Cys-loop receptors, small-conductivity mechanosensitive channels, large-conductivity mechanosensitive channels, voltage-gated proton channels, inositole-1,4,5-trisphosphate receptors, slow anion channels, aluminum-activated malate transporters and quick anion channels, mitochondrial calcium uniporters, voltage-dependent anion channels, vesicular chloride channels, ionotropic purinergic receptors, animal volage-insensitive cation channels, channelrhodopsins, bestrophins, voltage-gated chloride channels H+/Cl- exchangers, plant calcium-permeable mechanosensitive channels, and trimeric intracellular cation channels. Overall, dinoflagellates represent cells able to respond to physical and chemical stimuli utilizing a wide range of G-protein coupled receptors- and Ca2+-dependent signaling pathways. The applied approach not only shed light on the ion channel set in dinoflagellates, but also provided the information on possible molecular mechanisms underlying vital cellular processes dependent on the ion transport.

황산, 염소이온 반응 소재 혼입 수용액에서의 이온반응성 및 전기화학적 철근 부식에 관한 실험적 연구 (An Experimental Study on the Ion Reaction and the Electrochemical Rebar-Corrosion in Aqueous Solution Mixed with Sulfate and Chloride Ion-Reactive Material)

  • 류화성;신상헌;강태원;임창길;김홍태
    • 한국건축시공학회지
    • /
    • 제19권1호
    • /
    • pp.31-38
    • /
    • 2019
  • 본 연구에서는 하수 환경의 콘크리트 구조물(암거, 처리시설)용 보수재료의 요소기술로서 콘크리트 유해요인($SO{_4}^{2-}$, $Cl^-$)을 능동적으로 제어(고정, 반응)하는 아민유도체 및 이온교환수지를 대상으로, 시멘트세공용액을 모사한 수산화칼슘 수용액을 이용하여 이온 크로마토그래피 분석으로 유해요인 흡착성능을 확인하고, Potentiostat으로 철근 부식 저항성을 평가하였다. 실험결과, 아민유도체는 염소이온의 흡착, 이온교환수지는 황산이온의 흡착에 우수한 것으로 확인되었으며, 하수시설환경을 모사한 수용액에서 두 소재의 적절한 조합으로 부식 저항성을 증가시킬 수 있는 것을 확인하였다.

알칼리 활성화 3성분계 혼합시멘트의 염해 저항성에 관한 실험적 연구 (An Experimental Study on the Chloride Attack Resistibility of Alkali-Activated Ternary Blended Cement Concrete)

  • 양완희;황지순;전찬수;이세현
    • 한국건축시공학회지
    • /
    • 제16권4호
    • /
    • pp.321-329
    • /
    • 2016
  • 포틀랜드 시멘트, 고로슬래그 미분말, 플라이애시를 활용한 3성분계 혼합시멘트는 해양 콘크리트 구조물의 염해내구성 확보 등의 이유로 사용이 증가하고 있다. 이에 따라 본 연구에서는 보통포틀랜드 시멘트, 고로슬래그 미분말, 플라이애시를 4:4:2로 혼합한 3성분계 시멘트에 알칼리 설페이트계 활성화제(Modified Alkali Sulfate type)를 1.5~2.0% 사용할 때, NT Build 492에 의한 염화물 확산 시험과 ASTM C 1202( KS F 2271)에 의한 염소이온 침투 저항성 시험을 이용하여 콘크리트의 염해저항성의 변화를 관찰하고자 하였다. 그 결과 알칼리 설페이트계 활성화제의 활용에 따라 Plain 대비 슬럼프는 다소 감소하는 경향을 나타냈으나 재령 2일부터 재령 7일까지의 압축강도는 17~42% 향상되었다. 또한 재령 28일에 측정한 염화물 확산 계수는 알칼리 설페이트의 활용에 따라 Plain 대비 36~56% 감소하였으며, 염소이온 침투 저항성 시험에 따른 총통과전하량은 재령 7일은 33~62%, 재령 28일은 31~48% 감소하는 결과를 나타내었다. 이는 기존의 연구결과와 마찬가지로 알칼리 활성화에 의해 고로슬래그 미분말 및 플라이애시의 반응성이 향상되어 공극이 더욱 치밀해진 효과에 의한 것으로 판단된다. 향후 이와 관련하여 장기재령의 시험체를 대상으로 한 실험과 분석이 지속적으로 이루어져야 할 것으로 판단된다.

콘크리트의 염소이온 확산특성에 미치는 양생조건의 영향 (Effect of Curing Conditions on the Characteristics of Chloride Ion Diffusion in Concrete)

  • 임병탁;배수호;정영수;심은철;하재담
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.715-720
    • /
    • 2003
  • The chief factors for the penetration and diffusion of chloride ions in concrete are water-cement ratio(W/C), aging, curing conditions, chloride ions concentration of given environment., wet and dry conditions and etc. In this study, of these factors effect of curing conditions such as standard and outdoor curing on the characteristics of chloride ions diffusion in concrete were researched when environmental factors for the penetration and diffusion of chloride ions were constant. For this purpose, the voltages passing through the diffusion cell were measured by using accelerated test method using potential difference, and then diffusion coefficients of chloride ions by using Andrade's method were estimated for 44%, 49.5% and 60% of w/c, respectively. As a result., according to curing conditions correlation among diffusion coefficients of chloride ions, W/C and aging were concluded through multiple regression model.

  • PDF

A Hydration based Model for Chloride Penetration into Slag blended High Performance Concrete

  • Shin, Ki-Su;Park, Ki-Bong;Wang, Xiao-Yong
    • Architectural research
    • /
    • 제20권1호
    • /
    • pp.27-34
    • /
    • 2018
  • To improve the chloride ingress resistance of concrete, slag is widely used as a mineral admixture in concrete industry. And currently, most of experimental investigations about non steady state diffusion tests of chloride penetration are started after four weeks standard curing of concrete. For slag blended concrete, during submerged chloride penetration tests periods, binder reaction proceeds continuously, and chloride diffusivity decreases. However, so far the dependence of chloride ingress on curing ages are not detailed considered. To address this disadvantage, this paper shows a numerical procedure to analyze simultaneously binder hydration reactions and chloride ion penetration process. First, using a slag blended cement hydration model, degree of reactions of binders, combined water, and capillary porosity of hardening blended concrete are determined. Second, the dependences of chloride diffusivity on capillary porosity of slag blended concrete are clarified. Third, by considering time dependent chloride diffusivity and surface chloride content, chloride penetration profiles in hardening concrete are calculated. The proposed prediction model is verified through chloride immersion penetration test results of concrete with different water to binder ratios and slag contents.

Hypsochromic Shifts in Retinochrome Absorption Spectra in the Presence of Nitrate

  • Takemori, Nobuaki;Mizukami, Taku;Tsujimoto, Kazuo
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.264-266
    • /
    • 2002
  • The absorption wavelength of the protonated retinal Schiff base can be controlled by the surrounding environment. An external anion is related to fine adjustment of the absorption wavelength. The addition of anion to retinochrome solution caused blue shift in spectra. The increase of the shift was dependent on the ion concentration. The large shift value was obtained as 20 nm at the saturated concentration of nitrate. The shift intensity for the nitrate addition exceeded that of chloride. Seemingly, it depends on the ionic strength or lyotropic character of the anion. However, neither of sulphate nor gluconate ion showed remarkable blue shift. These phenomena were accounted for with (1) delocalization of the positive charge in the conjugated polyene system, (2) ionic bonding strength between the counter ion (glutamate) and the proton, and/or (3) interaction of the added anion with the proton on Schiff base.

  • PDF

전차선로 가선재의 수용액 부식 특성 (The Aqueous Corrosion Characteristics of Catenary Materials of Electric Railway System)

  • 김용기;장세기;조성일;이재봉
    • 한국철도학회논문집
    • /
    • 제4권2호
    • /
    • pp.62-70
    • /
    • 2001
  • Pure copper, Cu-1.1wt%Cd and ACSR(Aluminum Conductor Steel Reinforced) have been used as catenary materials of the electric railway system. Since these materials may be exposed to the corrosive environments like polluted air, acid rain and sea water, it is important to investigate the corrosion rates in various corrosive environments. The aqueous corrosion characteristics of catenary materials in aerated acid, neutral and alkali solutions were studied by using immersion corrosion tests, electrochemical measurements and analytical techniques. In order to examine corrosion characteristics according to the dissolved oxygen content, pH, chloride ion concentration ion, and the addition of Cd to Cu, a series of tests such as potentiodynamic polarization, a.c impedance spectroscopy and galvanic corrosion tests were carried out with these materials. Results showed that the addition of Cd to Cu and chloride ion in the solution have an adverse effects on the resistance to corrosion. Additionally, Galvanic currents between Al and steel wires of ACSR were confirmed by using ZRA(zero resistance ammeter) method.

  • PDF

Solvolyses of t-Butyl Halides in Binary Mixtures of Methanol with 1,2-Dimethoxyethane, 1,2-Dichloroethane and Pyridine

  • Yeol Sakong;Shi Choon Kim;Jin Sung Kim;Ikchoon Lee
    • Bulletin of the Korean Chemical Society
    • /
    • 제11권2호
    • /
    • pp.99-105
    • /
    • 1990
  • The Gutmann acceptor number(AN), solvatochromic parameters $({\alpha},{\beta}\;and\;{\pi}^{\ast})$ and hydrogen bonding equilibrium constants (KHB) were determined for three binary systems of methanol with 1,2-dimethoxyethane(DME), 1,2-dichloroethane(DCE) and pyridine (PYD). The solvolysis rate constants of t-butyl chloride, bromide and iodide were also determined in the three binary systems. Solvent properties and solvolysis rates have been discussed in the light of various solvent parameters. Solvolysis of t-butyl halides are most conveniently explained by the two-stage mechanism involving ion-pair intermediate with the ion-pair formation for chloride and ion pair dissociation for iodide as rate limiting.