• Title/Summary/Keyword: Chloride Ion

Search Result 1,125, Processing Time 0.03 seconds

Experimental Study of Chlorides Ion Diffusion Characteristics under Combined Condition of Chlorides and Sulfates (염해 및 황산염의 복합작용에 따른 염소이온 확산특성의 실험적 연구)

  • 오병환;김선우;정상화;서정문
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.413-418
    • /
    • 2000
  • The test results on the deterioration process of concrete under single and combined action of chloride penetration have been obtained. Within the test period of 15 weeks, it is seen that the internally penetrated chloride ion contents are slightly less in the combined action of NaCI and $Na_2SO_4$ than the single action of NaCI. Also the theoretical prediction of chloride penetration based on measured diffusion coefficient agress well with the test data of single deterioration process but disagress with that of combined process. Therefore it should be needed that improved chloride diffusion model for the combined deterioration process.

  • PDF

Comparison of Chloride Migration Properties of Concrete Containing Mineral Admixtures by the Electrical Accelerated Migration Test (전기촉진시험을 이용한 혼화재 혼입 콘크리트의 염화물 확산성능 비교 연구)

  • 유재강;김동석;이상수;김영진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.58-61
    • /
    • 2003
  • This paper investigated the chloride invasion resistance properties of concrete containing mineral admixtures(pozzolanic materials such as fly-ash, ground granulated blast-furnace slage, silica fume and meta kaolin) for each replacement ratios under W/B ratios ranged from 40% to 55%. For the electrical migration test, Tang and Nilsson's method was used to estimate the migration coefficient of chloride ion. As a result, the migration coefficients of chloride ion of concrete containing mineral admixtures were shown reducing with the use of mineral admixtures, and the compressive strength was shown related to the migration coefficient. From the correlation between compressive strengths and migration coefficients, the kind and replacement ratio of mineral admixtures have a great effect on migration coefficients below 50㎫.

  • PDF

Finite Element Analysis of the Effect of Chloride Ion on the Coastal Concrete Structure with Ground Granulated Blast Furnace Slag (고로슬래그 미분말을 사용한 해양콘크리트 구조물의 염분침투해석)

  • 여경윤;김은겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.945-950
    • /
    • 2000
  • Coastal concrete structure is harmed by physical and chemical action of sea water, impact load, meteorological effect and etc. especially, premature reinforcement corrosion in concrete exposed to sea water has an important problem. In this study, the behavior of chloride ions penetrated through the coastal concrete structure with ordinary portland cement or ground granulated blast furnace slag(GGBFS) was modeled. The physicochemical processes including the diffusion of chloride and the chemical reaction of chloride ion with calcium silicate hydrate and the other constituents of hardened cement paste such as$C_3A$ and $C_4AF$were analyzed by using the Finite Element Method. From analysis result, the corrosion of concrete structure with GGBFS begins 1.69~1.76 times later than that of concrete structure with ordinary portland cement.

A study on Probability-based Durability Design of Concrete Structures subjected to Chloride Attack (확률론적 방법을 적용한 콘크리트 구조물의 염해 내구성 설계에 관한 연구)

  • Kim Won-Dong;Song Ha-Won;Byun Kun-Joo;Pack Sung-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.161-164
    • /
    • 2005
  • A probability-based durability design which minimizes the uncertainties on durability parameters of concrete is proposed for reinforced concrete structures subjected to chloride attack. The uncertainties of various factors such as water-cement ratio, curing temperature, age of concrete and the variation of these factors which affect chloride ion diffusion are considered. For the durability design, a probability-distribution function for each factor is obtained and a program which combines Fick's 2nd law and Monte Carlo simulation is developed. The durability design method proposed in this study considers probability of durability limit and probability of the concentration of chloride ion, so that the probability-based deterioration prediction is possible.

  • PDF

Numerical simulation of three-dimensional crack features and chloride ion transport in unsaturated and damaged mortar

  • Zhiyong Liu;Yunsheng Zhang;Jinyang Jiang;Rusheng Qian;Tongning Cao;Yuncheng Wang;Guowen Sun
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.485-499
    • /
    • 2023
  • Both damage and unsaturated conditions accelerate the transport of erosive media inside concrete. However, their combined effects have not been fully investigated. A multiscale mortar model using representative volume elements is developed, capturing the number and distribution in each phase. Afterwards, mortar damage microstructure evolution is simulated in the tensile process. Finally, the unsaturated mortar transport is predicted and analysed. The results indicate that damage significantly affects the diffusion process in the early stage, while the transport performance is weakened due to the obstruction of the nontransport phase in the later stage. The higher the saturation and the more connected pores, the faster the diffusion rate of chloride ions. Chloride ions spread around the cracks in a tree-like manner along. The model can very well predict the chloride ion transport performance of unsaturated and damaged mortar.

Experimental Study for Evaluation of Chloride Ion Diffusion Characteristics of Concrete Mix for Nuclear Power Plant Water Distribution Structures (원전 취배수 구조물 콘크리트 배합의 염소이온 확산특성 평가를 위한 실험적 연구)

  • Lee, Ho-Jae;Seo, Eun-A
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.112-118
    • /
    • 2022
  • In this study, the diffusion characteristics were evaluated using the concrete mix design of nuclear safety-related structures. Among the concrete structures related to nuclear power safety, we selected the composition of intake and drainage structures that are immersed in seawater or located on the tidal platform and evaluated the chloride ion permeation resistance by compressive strength and electrical conductivity and the diffusion characteristics by immersion in salt water. analyzed. Compressive strength was measured on the 1st, 7th, 14th, 28th, 56th, and 91st days until the 91st day, which is the design standard strength of the nuclear power plant concrete structure, and chloride ion permeation resistance was evaluated on the 28th and 91st. After immersing the 28-day concrete specimens in salt water for 28 days, the diffusion coefficient was derived by collecting samples at different depths and analyzing the amount of chloride. As a result, it was found that after 28 days, the long-term strength enhancement effect of the nuclear power plant concrete mix with 20% fly ash replacement was higher than that of concrete using 100% ordinary Portland cement. It was also found that the nuclear power plant concrete mix has higher chloride ion permeation resistance, lower diffusion coefficient, and higher resistance to salt damage than the concrete mix using 100% ordinary Portland cement.

A Comparative Study of Sulfate and Chloride Intrusion in Mortar Sections: An Approach Using Laser Induced Breakdown Spectroscopy and Ion Exchange Membrane (LIBS와 이온교환막을 활용한 모르타르 단면 침투 황산염과 염화물 분석)

  • Park, Won-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.221-229
    • /
    • 2023
  • This research aimed to conduct an empirical assessment of the penetration of chloride and sulfate ions into mortar sections using an anion exchange membrane(AEM) and laser-induced breakdown spectroscopy(LIBS). The study involved a simultaneous ion chromatography(IC) analysis and LIBS analysis performed on mortars immersed in varying concentrations of chloride and sulfate. The findings revealed that at the wavelengths specific to Chloride(837.59nm) and Sulfur(921.30nm), the LIBS intensity achieved using AEM surpassed that obtained with a paper substrate at equivalent penetration concentrations. A robust correlation was confirmed between LIBS intensity and chloride ion concentration. Furthermore, when juxtaposed with IC analysis concentration outcomes at identical depths, the AEM displayed a higher intensity. The research noted an enhancement in LIBS intensity and a diminution in errors within the low-concentration section when deploying AEM. However, for the Sulfur wavelength of 921.3nm, there remains a need to augment the sensitivity of the LIBS signal within the low-concentration section in future studies. The findings underscore the potential of employing AEM and LIBS for precise analysis of chloride and sulfate ion penetration into mortar sections. This strategy can aid in bolstering assessment precision and mitigating errors, particularly in regions with low concentrations. It is recommended to further research and develop methods to amplify the sensitivity of the LIBS signal for sulfur detection in low-concentration sections. In sum, the study accentuates the significance of employing advanced techniques like AEM and LIBS for efficacious and precise analysis in the domain of mortar section assessment.

Nitrogen Removal by Electrochemical Oxidation Using the Tube Type Electrode (튜브형 전극을 이용한 전기화학적 산화에 의한 질소제거에 관한 연구)

  • Cho, Jae-Jun;Jeong, Jong-Sik;Lee, Jae-Bok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.580-587
    • /
    • 2004
  • The objective of this research is to investigate the electrochemical oxidation process for nitrogen removal in wastewater involving chloride ion and nitrogen compounds. The process experiment of electrochemical oxidation was conducted by using the stainless steel tube type reactor and the $Ti/IrO_2$ as anode. Free chlorine production and current efficiency variation for total nitrogen removal was compared depending on whether electrolyte is added, and the nitrogen type distribution under an operating condition. When chloride was added as electrolyte, it was found that production of free chlorine increased and the concentration of the chloride decreased as retention time passed. The concentration of chloride in influent decreased from 1,660 to 1,198 mg/L at the current density of $6.7A/dm^2$, while concentration of free chlorine increased to 132 mg/L. Current efficiency in removal of ammonium nitrogen was increased when chloride was dosed as electrolyte. It was observed that ammonium nitrogen was oxidized to nitrite and nitrate through electrochemical oxidation and that the concentration of total nitrogen in influent was reduced from 22.58 to 4.00 mg/L at the short retention time of 168 seconds through the electrochemical oxidation of nitrogen.

Testing of the permeability of concrete box beam with ion transport method in service

  • Wang, Jia Chun
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.461-471
    • /
    • 2015
  • The permeability is the most direct indicator to reflect the durability of concrete, and the testing methods based on external electric field can be used to evaluate concrete permeability rapidly. This study aims to use an experiment method to accurately predict the permeability of concrete box beam during service. The ion migration experiments and concrete surface resistivity are measured to evaluate permeability of five concrete box beams, and the relations between these results in service concrete and electric flux after 6 hours by ASTM C1202 in the laboratory are analyzed. The chloride diffusion coefficient of concrete, concrete surface resistivity and concrete 6 hours charge have good correlation relationship, which denote that the chloride diffusion coefficient and the surface resistivity of concrete are effective for evaluating the durability of concrete structures. The chloride diffusion coefficient of concrete is directly evaluated permeability of concrete box beam in service and may be used to predict the service life, which is fit to engineering applications and the concrete box beam is non-destructive. The concrete surface resistivity is easier available than the chloride diffusion coefficient, but it is directly not used to calculate the service life. Therefore the mathematical relation of the concrete surface resistivity and the concrete chloride diffusion coefficient need to be found, which the service life of reinforced concrete is obtained by the concrete surface resistivity.

A Study on Ion Concentration Change of Acid Rain by the Succeeding Raintall (연속강우시 산성우의 이온농도 변화에 관한 조사연구)

  • 박경렬;김대선
    • Journal of Environmental Health Sciences
    • /
    • v.16 no.2
    • /
    • pp.11-20
    • /
    • 1990
  • To investigate ionic characteristics of acid rain by the succeeding rainfall. bulk precipitation was collected every each 5mm rainfall from march to october 1990 at Dae Jeon area. pH, sulfate nitrate, chloride, ammonium ion was measured and analyzed. The result was as follows: 1. The weighted average pH of rain was 5.1$\pm$ 0.72(4.15~7.6) and rain pH less than 5.5 was appeared 51.3% 2. Average ion concentrations of sulfate, nitrate, chloride and ammonium ion was 125.12 $\mu$eq/l, 62.38 $\mu$eq/l, 31.95 $\mu$eq/l, 66.6 $\mu$eq/l and rates of each anions was 57%, 28.4%, 14.6% and rate of sulfate by nitrate was 2 times. 3. There is no correlations time interval of rainfall and Ion concentration change. 4. From initial to 15mm rainfall, each ion concentrations were decreased. and average concentration of pH, SO$^{-2}_{4}$, Cl ion concentration was increased in the succeeding rainfall 5. Only sulfate ion was correlated by the simple regression analysis with pH except NO$^{-}_{3}$, Cl$^{-}$ and NH$_{4}^{+}$ Cl$^{-}$ correlation coefficient was very high at the multiple regression analysis with pH. 6. Simple & multiple correlation coefficient among anions and NH$^{+}_{4}$ was very high especially N$^{+}_{4}$ and SO$^{2-}_{4}$ at simple regression analysis and SO$^{-2}_{4}$ and NO$_{3}^{-}$, Cl$^{-}$, NH$_{4}^{-}$ at multiple regression analysis.

  • PDF