• Title/Summary/Keyword: Chitosan-Cu

Search Result 50, Processing Time 0.024 seconds

Hydrolysis of DFP Using Cu(II)-Lactic Acid and Cu(II)-LMWS-Chitosan Chelates (Cu(II)-Lactic Acid와 Cu(II)-LMWS-Chitosan 착물의 DFP 가수분해반응 연구)

  • Kye, Young-Sik;Jeong, Keunhong;Kim, Dongwook
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.475-480
    • /
    • 2020
  • Chelates synthesized with Cu(II) ion and lactic acid or chitosan were applied to the hydrolysis of organophosphate simulant, DFP (diisopropyl fluorophosphate). Under the homogeneous reaction condition, Cu(II)-lactic acid chelate hydrolyzed DFP with the half life time of 37.1 min. Cu(II)-LMWS chitosan chelate was synthesized with 1 kDa molecular weight of chitosan, which showed low solubility, and then crystallized. The half life time for hydrolyzing DFP using Cu(II)-LMWS chitosan was 32.9 h indicating that the reaction rate is enhanced as much as 16 times more than that of using 18 kDa chitosan-Cu(II) complex. Under the homogeneous reaction condition, the half life time of Cu(II)-LMWS chitosan was 8.75 h. Therefore, we found out that the solubility of Cu(II)-LMWS chitosan makes the difference in the reaction rate as much as 4 times.

Effects of Supplementary Copper Chelates in the Form of Methionine, Chitosan and Yeast on the Performance of Broilers

  • Lim, H.S.;Paik, I.K.;Sohn, T.I.;Kim, W.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.9
    • /
    • pp.1322-1327
    • /
    • 2006
  • An experiment was conducted to investigate the effects of supplemental copper (Cu) chelates (methionine, chitosan and yeast) on the performance, nutrient digestibility, serum IgG level, gizzard erosion, Cu content in the liver and excreta and the level of total cholesterol in breast muscle and serum of broiler chickens. Two hundred and forty hatched broiler chickens (Ross$^{(R)}$ 208) were assigned to 4 treatments: control, 100 ppm Cu in methionine chelate (Met-Cu), 100 ppm Cu in chitosan chelate (Chitosan-Cu) and 100 ppm Cu in yeast chelate (Yeast-Cu). Each treatment had six replicates of 10 (5 males+5 females) birds each. Weight gain and feed intake tended to be higher in Cu chelate treatments than the control; weight gain was significantly higher in the Met-Cu chelate treatment and feed intake was significantly higher in the Yeast-Cu chelate treatment than the control (p<0.05). Feed/gain was significantly different between treatments in which Met-Cu was lowest followed by the control, Chitosan-Cu and Yeast-Cu. DM availability was increased by Cu chelates among which chitosan-Cu showed the highest DM availability. Cu chelates supplementation tended to increase gizzard erosion index, and Cu content in the liver was highest in the Met-Cu treatment. Supplementation of Cu chelates tended to decrease total cholesterol level in breast muscle and serum but tended to increase the level of HDL in serum. It was concluded that dietary supplementation of 100 ppm Cu in chelates increased weight gain, feed intake and DM availability. Met-Cu was more effective than Chitosan-Cu or Yeast-Cu in improving productivity of broiler chickens.

A Study on the Decomposition of DFP using Cu(II)-Chitosan Complex (Cu(II)-Chitosan Complex의 DFP 분해 반응 연구)

  • Kye, Young-Sik;Chung, Woo Yong;Kim, Dongwook;Park, Yangki;Song, Siuk;Jeong, Keunhong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.699-704
    • /
    • 2012
  • In this study, we have proposed a novel decomposition agent composed of Cu(II) and soluble chitosan for organophosphorus chemical agents. Compared to the autohydrolysis, the soluble Cu(II)-Chitosan complex hydrolyzed DFP more effectively. Results show that soluble Cu(II)-Chitosan complex enhances the hydrolysis of DFP in 4~6 folds compared to the autohydrolysis of DFP in buffer solution. This study provides the possibility of using this soluble Cu(II)-Chitosan complex as the environmental friendly decomposition agent which can substitute current DS-2 decomposition agent.

Effects of Dietary Supplementation of Copper Chelates in the Form of Methionine, Chitosan and Yeast in Laying Hens

  • Lim, H.S.;Paik, I.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.8
    • /
    • pp.1174-1178
    • /
    • 2006
  • An experiment was conducted to investigate the effects of dietary supplementation of copper chelates in the form of methionine, chitosan and yeast on the performance of laying hens. Four hundred ISA Brown layers, 84 wks old, were assigned to 4 treatments: control, 100 ppm Cu in methionine chelate (Met-Cu), 100 ppm Cu as chitosan chelate (Chitosan-Cu) and 100 ppm Cu as yeast chelate (Yeast-Cu). Each treatment had five replicates of 20 hens. Hen-day and hen-housed egg production and egg weight were significantly (p<0.05) increased by Met-Cu supplementation. The increase by Chitosan-Cu and Yeast-Cu supplementation was not significant. Contrast of the control vs. Cu chelates showed egg weight was significantly (p<0.05) increased by Cu chelate supplementation. Soft-shell egg production was significantly (p<0.05) reduced by supplementation of Cu chelates. Met-Cu treatment showed the lowest incidence of soft egg production. Gizzard erosion index was increased by Cu chelate supplementation. Crude fat in liver, total cholesterol in yolk and Cu content in liver and yolk were not significantly influenced by Cu chelate supplementation. It was concluded that dietary supplementation of 100 ppm Cu as Met-Cu significantly increased egg production and egg weight. Cu-Met chelate was also effective in reducing soft-shell egg production but increased gizzard erosion index.

Synthesis of Chelating Adsorbent (2,2'-Iminodibenzoic Acid-crosslinked Chitosan) and Adsorptivity of Pb(II), Cu(II), Cd(II) (킬레이트 흡착제(2,2'-Iminodibenzoic acid-가교 chitosan)의 합성과 Pb(II), Cu(II), Cd(II)의 흡착력에 관한 연구)

  • Shim, Sang-Kyun;Ryu, Jae-Jun
    • Analytical Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.452-459
    • /
    • 1998
  • Crosslinked chitin was prepared from epichlorohydrin and chitin which was isolated from waste marin source. The crosslinked chitosan were prepared by the deacetylation of the crosslinked chitin with a strong base. 2,2'-Iminodibenzoic acid-crosslinked chitosan was prepared by reacting 2,2'-Iminodibenzoic acid salt with crosslinked chitosan-Cl which was obtained by chlorination of crosslinked chitosan. The adsorptivity of Pb(II), Cu(II), Cd(II) was studied as a synthetic adsorbent. Experimental results for the adsorption and the recovery characteristics showed that the more pH increase, the more amount of adsorbed metal ion increase. Optimum adsorption time was 1 hr, and adsorption capacity was increased in order of $Cu^{2+}$<$Cd^{2+}$<$Pb^{2+}$, and recovery capacity was increased in order of $Cd^{2+}$<$Cu^{2+}$<$Pb^{2+}$.

  • PDF

Adsorption of Cupric Ions on Chitosan (키토산을 이용한 중금속(Cu2+) 흡착)

  • Kim, Tae Young;Kim, Kyoung Jin;Moon, Hee;Yang, Jai Ho
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.268-274
    • /
    • 1999
  • The chitosan solution was prepared by dissolving chitosan into 2 wt % aqueous acetic acid solution and then chitosan beads were made by sol-gel method. The average molecular weight and the degree of deacetylation of the chitosan used here were determined to be $8.2{\times}10^5$ and 85%, respectively. chitosan beads were highly porous which was confirmed by SEM photography and BET. Adsorption equilibrium of $Cu^{2+}$ on porous chitosan beads could be represented by Sips equation. The diffusion of cupric ions in the chitosan beads could be explained by pore and surface diffusion mechanisms. Adsorption dynamics of $Cu^{2+}$ in fixed-bed could be simulated by linear driving force approximation (LDFA). It was proven that porous chitosan beads manufactured in this work are good adsorbents for the removal of $Cu^{2+}$.

  • PDF

Effect of Copper Chelates(Methionine-Cu, Chitosan-Cu and Yeast-Cu) as the Supplements to Weaning Pig Diet (이유자돈의 사료 첨가제로서 Copper Chelates(메치오닌, 키토산, 효모)의 효과)

  • Kim, B. H.;Lim, H. S.;Namkung, H.;Paik, I. K.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.49-56
    • /
    • 2003
  • An experiment was conducted to study the effects of the dietary Cu sources on the performance of the weanling pigs. Forty-eight, 24 in each sex, 4 weeks old pigs were assigned to four treatments; control, methionine-Cu chelate, chitosan-Cu chelate or yeast-Cu chelate. Control diet contained 136ppm Cu to which additional 100ppm Cu in different chelated form was added to the respective treatment. Individual pig weight and feed intake of each pen were recorded weekly for 5 weeks. Average daily feed intakes(ADFI), average daily gains(ADG) and ADFI/ADG were not significantly different among treatments. Nutrient availability was not also significantly affected by treatments. Serum triglyceride concentration of chitosan-Cu treatment was significantly lower than those of methionine-Cu and yeast-Cu treatments but was not significantly different from that of the control. Serum cholesterol concentration of yeast-Cu was significantly lower than those of the control and methionine-Cu but was not significantly different from that of chitosan-Cu treatment. Serum HDL-cholesterol concentration was not significantly affected by treatments. Serum IgG concentrations of all copper treatments were significantly lower than that of the control. It was concluded that Cu-chelates supplemented to the basal diet (136ppm Cu) by the level of 100ppm Cu did not significantly affect growth performance of weaning pigs. However, serum parameters of cholesterol, cholesterol and IgG were significantly affected by the treatments.

A Study Improvement of Adsorption of Gromwell (자초염료의 염색성 증진을 위한 방안(I))

  • 최인려;최정임
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.3 no.2
    • /
    • pp.35-50
    • /
    • 2001
  • The object of this study is to improve the adsorption of dye for gromwell. Dye was from gromwell first soaked in methylol and added the distilled water, using same amount of methylol. The fabrics used for the experiments were cotton, silk and acrylics(KS0905). These were used untreated and pretreated with chitosan, premordanted with Cu, Al and Fe. Dyeing conditions were controlled. 1. Deep color effect was shown silk. 2. Chitosan treated cotton and acrylics showed deep color effect and huge color difference before and after the experiment. 3. In chitosan treated acrylics, deep color effect were shown. It proved the good adsorption of gromwel under metal mordanting. 4. Cu showed high adsorption of gromwell and deep color effect. 5. Chitosan treated acrylics can be substitute for wool.

  • PDF

Mechanism of Metal Ion Binding to Chitosan in Solution. Cooperative Inter- and Intramolecular Chelations

  • Joon Woo Park;Myung Ok Park;Kwanghee Koh Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.3
    • /
    • pp.108-112
    • /
    • 1984
  • Interactions between metal ions and chitosan in solution were studied by spectroscopic and viscometric measurements. $Cu^{++}$-chitosan complex exhibited an absorption band at 265 nm, whereas D-glucosamine complex showed one at 245 nm. The difference in ${\lambda}_{max}$ was attributed to the different amine to $Cu^{2+}$ ratios of the complexes, that is, 2 : 1 for chitosan and 1 : 1 for D-glucosamine. The molar absorptivities and binding constants of the complexes were evaluatatled. The binding of $Cu^{2+}$ to chitosan was cooperative near pH 5, and both intra- and intermolecular chelations depending on chitosan and $Cu^{2+}$concentrations were observed, The intermolecular chelation was stabilized by addition of salts. The cooperative intermolecular chelation of $Ni^{++}$ was also observed at pH 6.2. No significant binding of other divalent ions was observed. The reported high adsorption abilities of chitosan particles for these ions were attributed to the deposition of metal hydroxide aggregates in pores of chitosan particles rather than chelation to amine groups.

Natural Dyeing of Chitosan Crossinked Cotton Fabrics(IV) - Cochineal - (키토산 가교 처리된 면직물의 천연염색에 관한 연구(IV) - 코치닐을 중심으로 -)

  • Kwak, Mi-Jung;Lee, Shin-Hee
    • Fashion & Textile Research Journal
    • /
    • v.12 no.3
    • /
    • pp.381-388
    • /
    • 2010
  • The purpose of this study was investigate the dyeing property on chitosan crosslinked cotton fabric with cochineal at variable conditions. Chitosan crosslinked cotton fabrics were manufactured by crosslinking agent epichlorohydrin in the presence of chitosan. Chitosan crosslinked cotton fabrics dyed using cochineal were post-mordanted using Al, Fe and Cu. The dyeability(K/S) of chitosan crosslinked cotton fabrics were measured by computer color matching. Additionally the fastness to washing and light were also investigated. The dye-uptake of chitosan crosslinked cotton fabrics increased with the dyeing time. The saturated dyeing time was about 20minutes at $60^{\circ}C$. The dyeability(K/S) was remarkably increased with increasing content of crosslinked chitosan because of having a amine group of chitosan. Chitosan crosslinked cotton fabrics were dyed yellowish red by non and Fe mordanting, blueish red by Al and Cu mordanting, respectively. The washing and light fastness were increased by mordanting, especially Cu and Fe mordanting.