• Title/Summary/Keyword: Chiral stationary phase

Search Result 104, Processing Time 0.026 seconds

Enantiomeric purity test of R-(+)-alpha lipoic acid by HPLC using immobilized amylose-based chiral stationary phase

  • Le, Thi-Anh-Tuyet;Pham, Thuy-Vy;Mai, Xuan-Lan;Song, Chailin;Woo, Sungjun;Jeong, Cheolhee;Choi, Sungyoun;Phan, Thanh Dung;Kim, Kyeong Ho
    • Analytical Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • Alpha lipoic acid, an antioxidant, is widely used for treatment of various diseases. It is a racemic mixture, with R-(+)-α lipoic acid exhibiting greater potency, bioavailability, and effectiveness than those of the S-form. Thus, selective R-(+)-α lipoic acid has been recently used in various applications, necessitating the development of a method to test the enantiomeric impurity in R-(+)-α lipoic acid. We developed a simple and fast high-performance liquid chromatography method using a new immobilized amylose-based chiral column (Chiralpak IA-3). Design of experiment was applied to accurately predict the effects and interactions among various factors affecting the analytical parameters and to optimize the chromatographic conditions. This optimized method could completely separate the two enantiomer peaks with a resolution > 1.8 within a short running time (9 min). Then, the optimized method was validated according to the guidelines of the International Conference on Harmonization and applied for quantification of S-(-)-α lipoic acid in some commercial R-(+)-α lipoic acid tromethamine raw material. Our results suggested that the developed method could be used for routine quality control of R-(+)-α lipoic acid products.

Preparation of Three Different Style Packed Capillary Frits

  • Ryoo, Jae-Jeong;Song, Young-Ae;Lee, Kwang-Pill;Park, Ji-Yeon;Choi, Seong-Ho;Hyun, Myung-Ho;Ohta, Kazutoku;Fujimoto, Chuzo;Jin, Ji-Ye;Takeuchi, Toyohide;Lee, Jung-Whan
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.524-528
    • /
    • 2006
  • Three different style capillary columns, a packed capillary with temporary quartz wool frit, a packed capillary with immobilized frit, and an immobilized packed-capillary, were easily prepared with a commercially available (S)-N-(3,5-dinitro-benzoyl)leucine-N-phenyl-N-alkylamide derived chiral stationary phase. Liquid chromatographic chiral separations of some racemic amino acid derivatives on these columns were performed and the results were compared to each other. The packed capillary with immobilized frit showed some merits in chiral chromatography.

Liquid Chromatographic Resolution of α-Amino Acid Esters as Benzophenone Imine Derivatives (아미노산 에스테르의 벤조피논 이민 유도체의 액체 크로마토그래피의 광학분리)

  • Yun, Won-Nam;Xu, Wen Jun;Huang, Hu;Lee, Won-Jae
    • KSBB Journal
    • /
    • v.27 no.3
    • /
    • pp.167-171
    • /
    • 2012
  • A convenient liquid chromatographic enantiomer separation of several ${\alpha}$-amino acid esters as benzophenone Schiff base derivatives on covalently immobilized chiral stationary phases (CSPs) derived from polysaccharide derivatives was developed. The benzophenone imine derivatives of ${\alpha}$-amino acid esters were readily prepared by stirring benzophenone imine and the ${\alpha}$-amino acid ester hydrochloride salts in 2-propanol. The chromatographic conditions used on all CSPs were 0.5% or 5% 2-propanol/hexane (V/V) as the mobile phases at 1 mL/min of flow rate and UV 254 nm detection. The performance of Chiralpak IC among all CSPs was superior to that of the other CSPs for resolution of benzophenone imine derivatives of ${\alpha}$-amino acid esters. It is expected that the developed analytical method will be useful for enantiomer resolution of other ${\alpha}$-amino acid esters as benzophenone Schiff base derivatives.

A Newly Developed Analytical and Semi-preparative Enantiomer Separation of Fluoxetine using Polysaccharide-derived Chiral Stationary Phases by High Performance Liquid Chromatography (고성능 액체 크로마토그래피에 의한 다당 유도체의 키랄 고정상에서 플록세틴의 새롭게 개발된 분석 및 반분취의 광학분리)

  • Kim, Seok Jin;Nam, Kyung Wook;Park, Bohyun;Islam, Md. Fokhrul;Lee, Wonjae
    • KSBB Journal
    • /
    • v.31 no.3
    • /
    • pp.186-191
    • /
    • 2016
  • A liquid chromatographic method for the enantiomer separation of fluoxetine was performed using covalently bonded and coated type polysaccharide-derived chiral stationary phases (CSPs). The degree of enantioseparation is affected by the used CSPs and mobile phases. The performance of Chiralpak IC was superior to the other CSPs used in this study. Out of various solvent composition and additives, the greatest separation and resolution was observed using Chiralpak IC with mobile phase of 2-propanol in hexane with diethylamine as an additive. Semi-preparative separation of fluoxetine was performed on the analytical Chiralpak IC column to obtain (R)- and (S)-fluoxetine enantiomer with high chemical and optical purity. From the overall study, the developed liquid chromatographic method on polysaccharide-derived CSPs is expected to be very useful for the enantiomer separation of fluoxetine.

High Performance Liquid Chromatographic Analyses of Higenamine Enantiomers in Aconite Roots

  • Chung, Kyo-Soon;YunChoi, Hye-Sook;Hahn, Young-Hee
    • Natural Product Sciences
    • /
    • v.6 no.1
    • /
    • pp.20-24
    • /
    • 2000
  • The enantiomers of higenamine were directly separated by high performance liquid chromatography using a chiral stationary phase and detected by UV. The R- and S-isomers of higenamine were eluted at the retention time of 22 min and 27 min, respectively. Higenamine was determined to be present as R-(+)-enantiomer not only in the embryo of Nelumbo nucifera, from which the separation of R-(+)-higenamine was reported, but also in various Aconite roots, from which higenamine was separated as optically inert racemic mixtures.

  • PDF

Enantioselective Determination of Cetirizine in Human Urine by HPLC

  • Choi, Sun-Ok;Lee, Seok-Ho;Kong, Hak-Soo;Kim, Eun-Jung;Parkchoo, Hae-Young
    • Archives of Pharmacal Research
    • /
    • v.23 no.2
    • /
    • pp.178-181
    • /
    • 2000
  • In order to study the simultaneous determination of (+)- and (-)-cetirizine in human urine we have developed a chiral separation method by HPLC. A chiral stationary phase of $\alpha$$_1$-acidglycoprotein, the AGP-CSP was used to separate the enantiomers. The pH of the phosphate buffer, as well as the content of the organic modifier in the mobile phase, markedly affected the chromatographic separation of (+)- and (-)-cetirizine. A mobile phase of 10 m㏖/1 phosphate buffer (pH 7.0)-acetonitrile (95 : 5, v/v) was used for the urine assays. Ultraviolet absorption was monitored at 230nm and roxatidine was employed as the internal standard for quantification. (+)-Cetirizine, (-)-cetirizine and the internal standard were eluted at retention times of 12, 16, and 32 mins, respectively. The detection limit for cetirizine enantiomers was 400 ng/$m\ell$ of urine. A pharmacokinetic study was conducted with the help of 5 healthy female volunteers who were administered with a single oral dose of racemic cetirizine (20 mg). The peak area ratios provided by the cetirizine enantiomers were linear(r>0.997) over a concentration range of 2.5-200 ${\mu}g/ml$. The peak of the excreted cetirizine enantiomers appeared in the urine sample during the period of 1-2 hrs following the administration of the oral dose. The excreted level of (+)-cetirizine was slightly higher than (-)-cetirizine but the difference was not statistically significant. However, this method appears to have applications for enantioselective pharmacokinetic studies of racemic drugs.

  • PDF

Measurement of Optical Purity for Commercially Avialable Naproxen Sold in 2013 (2013년 시판된 나프록센의 광학순도 측정)

  • Seo, Hae Chan;Song, Jung Suk;Ryoo, Sang Hyun;Lee, Sang Heon;Ryoo, Dong Hyun;Yu, Jeong Jae;Ryoo, Jae Jeong
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.2
    • /
    • pp.179-185
    • /
    • 2014
  • Commercial (S)-naproxen was racemized under strong basic condition. After checking the peak position of (R)- and (S)-naproxen by analysis the recemized naproxen, optical purity of 19 commercialized naproxens sold in 2013 in Korea were examined by chiral HPLC. The Chiralcel OD-H column, ChiralHyun-LE(S)-1 column and LUX-Cellulose-1 column were used as chiral stationary phases and the mixed eluent of hexane:isopropanol:acetic acid as 100:1:0.1 was used as a mobile phase with a flow rate of 1.0 mL/min. Each data was obtained from an average value of at least three different experiments for each sample and the relative standard deviation of them appeared very small. The average optical purity values obtained from three different chiral columns were very similar and the total average optical purity value (99.32%) of nineteen commercialized naproxens used in this study were larger than those of three years ago (98.17%).

Optical Resolution of Dansyl Amino acids by Xylenyl-L-proline Copper (Ⅱ) Complex (Xylenyl-L-proline 구리 (Ⅱ) 착물을 이용한 단실아미노산의 광학분리)

  • Lee, Seon Haeng;O, Dae Seop;Park, Bun Ja
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.76-84
    • /
    • 1990
  • Optical isomers of dansyl amino acids were separated by a chiral mobile phase addition method. Two metha and para isomers of xylenyl-L-proline were prepared and used as the ligands of copper(Ⅱ) chelate to resolve the dansyl amino acids. Their elution behaviors were similar to those obtained from the addition of copper (Ⅱ) benzyl-L-proline chelate. The matrix effect of the mobile phase such as pH, concentration of buffer and compositions of organic solvent acetonitrile affected the optical resolution. The separation mechanism could be explained by a cis-trans effect of the ligand exchange reaction and hydrophobic interaction between the ternary complex and the stationary phase.

  • PDF