• Title/Summary/Keyword: Chiral modifier

Search Result 8, Processing Time 0.02 seconds

Resolution of Tocainide and Its Analogues on a Doubly Tethered N-CH3 Amide Chiral Stationary Phase Based on (+)-(18-Crown-6)-2,3,11,12-tetracarboxylic Acid

  • Lee, Kyu Jung;Tak, Kyung Mi;Hyun, Myung Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2978-2982
    • /
    • 2013
  • A doubly tethered $N-CH_3$ amide chiral stationary phase (CSP 4) based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid was applied to the resolution of an antiarrythmic agent, tocainide, and its analogues and the chromatographic resolution results were compared with those on a singly tethered N-H amide CSP (CSP 1), a singly tethered $N-CH_3$ amide CSP (CSP 2) and a doubly tethered N-H amide CSP (CSP 3) under an identical aqueous mobile phase condition. CSP 4 was found to be generally better than other CSPs in terms of the separation factors (${\alpha}$) and resolutions (RS). The retention times of analytes denoted by the retention factors ($k_1$) on CSP 4 were quite long compared to those on other CSPs because of the improved lipophilicity of CSP 4. The long retention times of analytes on CSP 4 were successfully controlled by the addition of a small amount of ammonium acetate to aqueous mobile phase without hurting the chiral recognition efficiency. The variation of the content and type of organic and acidic modifier in aqueous mobile phase was found not to change the chiral recognition efficiency significantly.

Liquid Chromatographic Resolution of Tocainide and Its Analogues on a Doubly Tethered Chiral Stationary Phase Based on (+)-(18-Crown-6)-2,3,11,12-tetracarboxylic Acid

  • Kim, Hee-Jin;Choi, Hee-Jung;Hyun, Myung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.3
    • /
    • pp.678-682
    • /
    • 2010
  • A doubly tethered chiral stationary phase (CSP) based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid were applied to the liquid chromatographic resolution of racemic tocainide, an antiarrhythmic agent, and its analogues. The chiral recognition efficiency of the doubly tethered CSP for tocainide and its analogues was generally greater than that of the corresponding singly tethered CSP especially in terms of the resolution ($R_S$). The resolution of tocainide and its analogues on the doubly tethered CSP were dependent on the content and the type of the organic and acidic modifiers in aqueous mobile phase and the column temperature. Especially, the retention behaviors of analytes on the doubly tethered CSP with the variation of the content of organic modifier in aqueous mobile phase were opposite to those on the corresponding singly tethered CSP and these opposite retention behaviors were rationalized by the lipophilicity differences of the two CSPs.

Enantiomeric Separation of Free Amino Acids Using N-alkyl-L-proline Copper(Ⅱ) Complex as Chiral Mobile Phase Additive in Reversed Phase Liquid Chromatography

  • Lee Sun Haing;Oh Tae Sub;Lee Hae Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.280-285
    • /
    • 1992
  • Enantiomeric separation of free amino acids has been achieved by a reversed phase liquid chromatography with addition of a Cu(Ⅱ) complex of N-alkyl-L-proline (alkyl: propyl, pentyl or octyl) to the mobile phase. The amino acids eluted were detected by a postcolumn OPA system. N-alkyl-L-proline was prepared and used as a chiral ligand of Cu(Ⅱ) chelate for the enantiomeric separation. The concentration of the Cu(Ⅱ) chelate, the organic modifier and pH affect the enantiomeric separation of free amino acids. The retention behaviour, varied with change in pH and the concentration of the Cu(Ⅱ) chelate, was different compared with those of the derivatized amino acids. The elution orders between D- and L-forms were consistent except histidine showing that L-forms elute earlier than D-forms. The retention mechanism for the enantiomeric separation can be illustrated by the stereospecificity of the ligand exchange reaction and the hydrophobic interaction between the substituent of amino acids and reversed phase, $C_18$.

Enantiomeric Separation of Amino Acids Using N-alkyl-L-proline Coated Stationary Phase

  • Lee Sun Haing;Oh Tae Sub;Lee Hae Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.285-289
    • /
    • 1992
  • Enantiomeric separation of underivatized amino acids using N-alkyl-L-proline (octyl, dodecyl or hexadecyl) coated HPLC has been accomplished. The anchoring N-alkyl groups of L-proline provides a permanent adsorption of there solving chiral agent on the hydrophobic interface layer of a reversed phase. The factors controlling retention and enantioselectivity such as the Cu(II) concentration, pH of the eluent, the type and concentration of organic modifier in the hydroorganic eluent, and extent of coating were examined. The elution orders between D- and L-amino acids were consistent, L-forms eluting first, except histidine and asparagine. The extremely high enantioselectivity $(\alpha$ upto 13 for proline) is observed. The retention mechanism for the chiral separation can be illustrated by a complexation and hydrophobic interaction.

Effect of Alumina Nanooxide Application on Nitrendipine Manufacturing Process (알루미나 나노산화물이 Nitrendipine 제조 공정에 미치는 영향)

  • Chae, E.J.;Uhm, Y.R.;Han, B.S.;Rhee, C.K.;Park, S.E.
    • Journal of Powder Materials
    • /
    • v.14 no.2 s.61
    • /
    • pp.127-131
    • /
    • 2007
  • The alumina nano powders synthesized by levitational gas condensation (LGC) method were applied to catalyst in manufacturing process of Hanzsch reaction for Nitrendipine. The L-tartaric acid on the surface is carried out with participation of carbonyl fragments, O-H, C-H bonds which affects stereo selectivity, yield on the reagents positively. From the analysis of the IR-spectroscopy, the carbonyl fragments, O-H, and C-H bond were created by the catalytic reaction. From the analysis of the rR-spectroscopy, the carbonyl fragments, O-H, and C-H bond were created by the catalytic reaction. The newly created bonds made a chiral center on the final product.

Enantioselective Determination of Cetirizine in Human Urine by HPLC

  • Choi, Sun-Ok;Lee, Seok-Ho;Kong, Hak-Soo;Kim, Eun-Jung;Parkchoo, Hae-Young
    • Archives of Pharmacal Research
    • /
    • v.23 no.2
    • /
    • pp.178-181
    • /
    • 2000
  • In order to study the simultaneous determination of (+)- and (-)-cetirizine in human urine we have developed a chiral separation method by HPLC. A chiral stationary phase of $\alpha$$_1$-acidglycoprotein, the AGP-CSP was used to separate the enantiomers. The pH of the phosphate buffer, as well as the content of the organic modifier in the mobile phase, markedly affected the chromatographic separation of (+)- and (-)-cetirizine. A mobile phase of 10 m㏖/1 phosphate buffer (pH 7.0)-acetonitrile (95 : 5, v/v) was used for the urine assays. Ultraviolet absorption was monitored at 230nm and roxatidine was employed as the internal standard for quantification. (+)-Cetirizine, (-)-cetirizine and the internal standard were eluted at retention times of 12, 16, and 32 mins, respectively. The detection limit for cetirizine enantiomers was 400 ng/$m\ell$ of urine. A pharmacokinetic study was conducted with the help of 5 healthy female volunteers who were administered with a single oral dose of racemic cetirizine (20 mg). The peak area ratios provided by the cetirizine enantiomers were linear(r>0.997) over a concentration range of 2.5-200 ${\mu}g/ml$. The peak of the excreted cetirizine enantiomers appeared in the urine sample during the period of 1-2 hrs following the administration of the oral dose. The excreted level of (+)-cetirizine was slightly higher than (-)-cetirizine but the difference was not statistically significant. However, this method appears to have applications for enantioselective pharmacokinetic studies of racemic drugs.

  • PDF

Optical Resolution of DABS-Amino Acids with Mobile Chiral Chelate Addition (키랄킬레이트 이동상첨가법에 의한 답실아미노산의 광학이성질체 분리)

  • Lee, Seon Haeng;O, Dae Seop;Byeon, Seong Gu
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.345-351
    • /
    • 1990
  • Optical isomers of DABS-amino acids have been separated in a reversed phae high performance liquid chromatography by adding Cu (Ⅱ)-L-Proline chelate to the mobile phase. The retention behaviors for the DABS-amino acids are discussed in terms of pH of the mobile phase and the concentrations of acetonitrile, Cu (Ⅱ) complex, and buffer. The selectivity of the optical isomers of DABS-amino acids increases with the pH of the mobile, and the concentration of the chelate, but decreases with concentration of the oganic modifier. The concentration of buffer does not affect the optical separation selectivity. A separation mechanism is illustrated by cis and trans formation based on the steric effect of the ligand exchange reaction between DABS-amino acids and the copper chelate.

  • PDF

Optical Resolution of Free Amino Acids with Addition of Copper(II) Chelates in a Reversed-Phase Liquid Chromatography (구리(II) 킬레이트의 첨가에 의한 자유아미노산 광학이성질체의 역상 액체크로마토그래피적 분리)

  • Sun Haing Lee;Tae Sub Oh;Hong Yeup An;Kyung Sug Park;Sang Oh OH
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.6
    • /
    • pp.879-888
    • /
    • 1992
  • Separation of the optical isomers of free amino acids by a reversed phase high performance liquid chromatography has been studied by adding a copper(II) complex of L-proline or L-proline derivatives (hydroxy-L-proline, N-benzyl-L-proline, p-xylenyl-L-proline, p-xylenyl-hydroxy-L-proline) in the mobile phase. An OPA postcolumn detection system was used for the detection of amino acids. The chromatographic properties for the free amino acids were discussed in terms of the pH, the kinds and concentration of chelate or organic modifier. The retention behaviors of the free amino acids were considerably different from, those of DNS-amino acids or DABS-amino acids. The enantioselectivity of the free amino acids was better than that of derivatized amino acids. The enantioselectivity between the optical isomers observed by use of the Cu(II)-p-xylenyl-L-proline chiral cheleate was the best among the several copper(II) chelate. A separation mechanism could be illustrated not only by the hydrophobic interaction of the diastereomer with stationary phase but also by the steric effect of the ligand exchange reaction between the free-amino acids and copper chelate.

  • PDF