• Title/Summary/Keyword: Chiral HPLC

Search Result 85, Processing Time 0.025 seconds

The Application of Chiral HPLC Columns for Enantiomer Separation of Chiral Drugs (Chiral Drugs의 광학분할을 위한 HPLC Column의 응용)

  • Lee, Won-Jae
    • YAKHAK HOEJI
    • /
    • v.53 no.2
    • /
    • pp.60-68
    • /
    • 2009
  • In terms of chiral issue, two enantiomers of chiral drugs often differ significantly in their pharmacological, toxicological and pharmacokinetic profile. Chiral switches of racemic drugs have been redeveloped as single enantiomers. Several chiral resolution techniques in chirotechnology are introduced and the most used chiral HPLC chromatographic method among several chiral analysis techniques is described with its several advantages. Several types of chiral HPLC columns derived from their chiral selectors are discussed with their property and applications for enantiomer separation.

1Determination of optical purity of N-acetyl-1-naphthylethylamine by chiral chromatography and NMR spectroscopy (키랄 크로마토그래피와 NMR 분광법에 의한 N-acetyl-1-naphthylethylamine의 광학순도 측정)

  • Jeong, Young-Han;Ryoo, Jae-Jeong
    • Analytical Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.97-101
    • /
    • 2010
  • (R)-N-3,5-dinitrobenzoyl (DNB) phenylglycinol derived chiral selector was used as a HPLC chiral stationary phase (CSP) for the resolution of racemic N-acylnaphthylalkylamines. In this study, determination of optical purity was performed by both chiral chromatography and NMR spectroscopy by using the (R)-phenylglycinol derived chiral selector. The data of accuracy and precision of each optical purity value are calculated from the results of NMR and HPLC experiments by comparing with true value. Average error of the NMR method was +2.2% with average RSD of 4.54%, while that of HPLC method was -3.5% with average RSD of 3.23%.

Development and Application of Crown Ether-based HPLC Chiral Stationary Phases

  • Hyun, Myung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.8
    • /
    • pp.1153-1163
    • /
    • 2005
  • Crown ether-based HPLC chiral stationary phases (CSPs) have been successfully utilized in the resolution of various racemic compounds containing a primary amino group. Especially, CSPs based on chiral crown ethers incorporating chiral binaphthyl unit or tartaric acid unit and based on phenolic pseudo chiral crown ethers have shown high chiral recognition efficiency. In this account paper, a review on the development of crown etherbased HPLC CSPs, their structural characteristics and applications to the resolution of racemic compounds including chiral drugs containing a primary or secondary amino group with the variation of the type and the content of mobile phase components and with the variation of the column temperature is presented.

Chiral Separation of ${\beta}-Blockers$ after Derivatization with a New Chiral Derivatization Agent, GATC

  • Ko, Mi-Young;Shin, Dae-Hong;Oh, Joung-Weon;Asegahegn, Workaferhaw Shibru;Kim, Kyeong-Ho
    • Archives of Pharmacal Research
    • /
    • v.29 no.11
    • /
    • pp.1061-1065
    • /
    • 2006
  • A new chiral derivatization agent with sugar moiety, 2,3,4,6-tetra-O-acetyl-${\beta}$-D-galactopyranosyl isothiocyanate (GATC) was synthesized. Several ${\beta}-blockers$ were investigated for the possible separation of the enantiomers by reversed-phase HPLC after derivatization with this new chiral derivatization agent (GATC). GATC was reacted readily with ${\beta}-blockers$ at room temperature and the reaction mixture could directly be injected into the HPLC system. The corresponding diastereomers were well resolved on an ODS column with acetonitrile-ammonium acetate buffer as a mobile phase and monitored at UV 254 nm. The optimization of the derivatization procedure (concentration of GATC, reaction temperature and time) and HPLC conditions (pH and ionic strength of mobile phase) were investigated and compared with GITC.

Investigation of Enantiomer Separation Using Chiral Crown Ethers as Chiral Selectors

  • Lee, Wonjae
    • Journal of Integrative Natural Science
    • /
    • v.9 no.1
    • /
    • pp.28-34
    • /
    • 2016
  • A number of chiral selectors have been developed and applied for enantiomer separation of a variety of chiral compounds. Among these chiral selectors are chiral crown ethers, a class of synthetic host polyether molecules that bind protonated chiral primary amines with high selectivity and affinity. In this paper, two important chiral crown ethers as chiral selectors of bis-(1,1'-binaphthyl)-22-crown-6 and (18-crown-6)-2,3,11,12-tetracarboxylic acid (18-C-6-TA) are focused. They have been widely used to resolve the enantiomers of chiral compounds containing a primary amino moiety using chiral stationary phases (CSPs) or chiral selectors by high-performance liquid chromatography (HPLC), capillary electrophoresis (CE) and so on in chirotechnology. Also, it was described that the commercially available covalent type HPLC CSPs derived from (+)- and (-)-18-C-6-TA have been developed and successfully applied for the resolution of various primary amino compounds including amino acids.

HPLC Resolution of Enantiomers Using Polysaccharide Derivatives as Chiral Stationay Phases

  • Okamoto, Yoshio
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.163-164
    • /
    • 2002
  • In the past two decades, separations of enantiomers (optical isomers) by high-performance liquid chromatography (HPLC) have remarkably advanced [1]. Among many commercially available chiral stationary phases (CSPs) for HPLC, polysaccharide-based CSPs are the most popular ones, which can cover the resolution of a wide range of the chiral compounds [2, 3, 4]. Here, I will explain mainly the HPLC separation of enantiomers using these CSPs. (omitted)

  • PDF

Chiral Purity Test of Bevantolol by Capillaryelectrophoresis and High Performance Liquid Chromatography

  • Long, Pham Hai;Trung, Tran Quoc;Oh, Joung-Won;Kim, Kyeong-Ho
    • Archives of Pharmacal Research
    • /
    • v.29 no.9
    • /
    • pp.808-813
    • /
    • 2006
  • Two methods for the chiral purity determination of bevantolol were developed, namely capillary electrophoresis (CE) using carboxymethyl-${\beta}$-cyclodextrin (CM-${\beta}$-CD) as a chiral selector and high-perfomance liquid chromatography (HPLC) using a chiral stationary phase. In the HPLC method, the separation of bevantolol enantiomers was performed on a Chiralpak AD-H column by isocratic elution with n-hexane-ethanol-diethylamine (10:90:0.1, v/v/v) as mobile phase. In the CE method, bevantolol enantiomers were separated on an uncoated fused silica capillary with 50 mM amonium phosphate dibasic adjusted to a pH 6.5 with phosphoric acid containing 15 mM CM-${\beta}$-CD as running buffer. Validation data such as linearity, recovery, detection limit, and precision of the two methods are presented. The detection limits of S-(-)-bevantolol were 0.1% and 0.05% for CE and HPLC method, respectively and R-(+)-bevantolol were 0.15% and 0.05% for CE and HPLC method, respectively. There was generally good agreement between the HPLC and CE results.

Efficient Immobilization of Polysaccharide Derivatives as Chiral Stationary Phases via Copolymerization with Vinyl Monomers

  • Chen, Xiaoming;Okamoto, Yoshio;Yamamoto, Chiyo
    • Macromolecular Research
    • /
    • v.15 no.2
    • /
    • pp.134-141
    • /
    • 2007
  • The direct chromatographic separation of enantiomers by chiral stationary phases (CSPs) has been extensively developed over the past two decades, and has now become the most popular method for the analytical and preparative separations of enantiomers. Polysaccharide derivatives coated onto silica gel, as CSPs, playa significantly important role in the enantioseparations of a wide range of chiral compounds using high-performance liquid chromatography (HPLC). Unfortunately, the strict solvent limitation of the mobile phases is the main defect in the method developments of these types of coated CSPs. Therefore, the immobilization of polysaccharide derivatives onto silica gel, via chemical bonding, to obtain a new generation of CSPs compatible with the universal solvents used in HPLC is increasingly important. In this article, our recent studies on the immobilization of polysaccharide derivatives onto the silica gel, as CSPs, through radical copolymerization with various vinyl monomers are reported. Polysaccharide derivatives, with low vinyl content, can be efficiently fixed onto silica gel with high chiral recognition.