• Title/Summary/Keyword: Chip-on-Board

Search Result 282, Processing Time 0.029 seconds

The design and FPGA implementation of a general-purpose LDI controller for the portable small-medium sized TFT-LCD (중소형 TFT-LCD용 범용 LDI 제어기의 설계 및 FPGA 구현)

  • Lee, Si-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.4
    • /
    • pp.249-256
    • /
    • 2007
  • AIn this paper, a new desist of LDI controller IC for general purpose is proposed for driving the LDI(LCD Driver Interface) controller in $4{\sim}9$ inches sized portable small-medium TFT-LCD(Thin Film Transistor addressed -Liquid Crystal Display) panel module. The designed LDI controller was verified on the FPGA(Reld Programmable Gate Array) test board, and was made the interactive operation with the commercial TFT-LCD panel successfully. The purpose of design is that it is standardized the LDI controller's operation by one LDI controller for driving all TFT-LCD panel without classifying the panel vendor, and size. The main advantage for new general-purpose LDI controller is the usage for the desist of all panel's SoG(System on a Glass) module because of the design for the standard operation. And in the previous method, it used each LDI controller for every LCD vendor, and panel size, but because a new one can drive all portable small-medium sized panel, it results in reduction of LDI controller supply price, and manufacturing cost of AV(Audio Video) board and panel. In the near future, the development of SoG IC(Integrated Circuit) for manufacturing more excellent functional TFT-LCD panel module is necessary. As a result of this research, the TFT-LCD panel can make more small size, and light weight, and it results in an upturn of domestic company's share in the world market. With the suggested theory in this paper, it expects to be made use of a basic data for developing and manufacturing for the SoG chip of TFT-LCD panel module.

  • PDF

Fabrication of the temperature controllable microreactor for trypsin treatment (온도 조절이 가능한 트립신 전처리 반응침의 제작)

  • Sim, Tae-Seok;Lee, Kook-Nyung;Joo, Hwang-Soo;Kim, Dae-Weon;Kim, Byung-Gee;Kim, Yong-Hyup;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.45-48
    • /
    • 2003
  • In the research of proteomics, mass spectrometry analysis is the essential method for identification of the unknown proteins. Trypsin treatment for the sample preparation of mass spectrometry is the inevitable procedure[1]. However, sample preparation procedure is cumbersome and time consuming. To resolve these problems, Temperature controllable microreactor was designed and fabricated. It consists of metering chamber, micro channel, reaction chamber, platinum (Pt) thin film heater and a temperature sensor so that micro metering and mixture of reagent with temperature control can be done on the same chip. The total size of the fabricated microreactor was $37{\times}30{\times}1\;mm^3$ and the size of channel cross section was $200{\times}100{\mu}m^2$. PID temperature controller was realized using NI DAQ, PCI-MIO-l6E-1 board and LabVIEW program.

  • PDF

Development and Application of a Miniature Stereo-PIV System (Miniature Stereo-PIV 시스템의 개발과 응용)

  • Kim, K.C.;Chetelat, Olivier;Kim, S.H.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1637-1644
    • /
    • 2003
  • Stereoscopic particle image velocimetry is a measurement technique to acquire three dimensional velocity field by two cameras. With a laser sheet illumination, the third velocity component can be deduced from out-of$.$plane velocity components using a stereoscopic matching method. Most industrial fluid flows are three dimensional turbulent flows, so it is necessary to use the stereoscopic PIV measurement method. However the existing stereoscopic PIV system seems hard to use since it is very expensive and complex. In this study we have developed a Miniature Stereo-PIV(MSPIV) system based on the concept of the Miniature PIV system which we have already developed. In this paper, we address the design and some primitive experimental results of the Miniature Stereo-PIV system. The Miniature Stereo-PIV system features relatively modest performances, but is considerably smaller, cheaper and easy to handle. The proposed Miniature Stereo-PIV system uses two one-chip-only CMOS cameras with digital output. Only two other chips are needed, one for a buffer memory and one for an interfacing logic that controls the system. Images are transferred to a personal computer (PC) via its standard parallel port. No extra hardware is required (in particular, no frame grabber board is needed).

A compact and low-power consumable device for continuous monitoring of biosignal (소형화 및 저전력소모를 구현한 실시간 생체신호 측정기 개발)

  • Cho, Jung-Hyun;Yoon, Gil-Won
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.334-340
    • /
    • 2006
  • A compact biosignal monitoring device was developed. Electrodes for electrocardiogram (ECG) and a LED and silicon detector for photoplethysmogram (PPG) were used. A lead II type was arranged for ECG measurement and reflected light was measured at the finger tip for PPG. A single chip microprocessor (model ADuC812, Analog Device) controlled a measurement protocol and processed measured signals. PPG and ECG had a sampling rate of 300 Hz with 8-bit resolution. The maximum power consumption was 100 mW. The microprocessor computed pulse transit time (PTT) between the R-wave of ECG and the peak of PPG. To increase the resolution of PTT, analog peak detectors obtained the peaks of ECG and PPG whose interval was calculated using an internal clock cycle of 921.6 kHz. The device was designed to be operated by 3-volt battery. Biosignals can be measured for $2{\sim}3$ days continuously without the external interruptions and data is stored to an on-board memory. Our system was successfully tested with human subjects.

Design of LED Driving Circuit using Voltage Controlled Ring Oscillator and Lighting Controller (전압제어 링 발진기를 이용한 LED구동회로 및 조명제어기설계)

  • Kwon, Ki-Soo;Suh, Young-Suk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.1-9
    • /
    • 2010
  • An LED driving and control circuit has been developed. The LED driver has a new PWM circuit for current control of LED columns with dimming, current and thermal control, and communication functions. The PWM circuit is composed of two ring oscillator and one counter which can be constructed using basic digital logic components. In addition, it has the functions of remote control mode such as ON, OFF, emergency and power saving modes by the serial communication. The PWM generator and control circuit have been designed and fabricated 0.35[${\mu}m$] Magnachip/Hynix digital IC fabrication process. The LED driving and control board using the developed chip is fabricated and tested successfully.

Development of a Stereoscopic Miniature PIV(MPIV) System (Stereoscopic Miniature PIV (MPIV) 시스템의 개발)

  • Kim S.H.;Chete1at O.;Kim K.C.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.517-520
    • /
    • 2002
  • Stereoscopic particle image velocimetry is a measurement technique to acquire of three dimensional velocity field by two cameras. With a laser sheet illumination, the third velocity component can be deduced by out-of-plane velocity components using a stereoscopic matching method. Industrial fluid flows are almost three dimensional turbulent flows, so it is necessary to use the stereoscopic PIV measurement method. However the existing stereoscopic PIV system seems hard to use since it is very expensive and complex. In this study we have developed a Stereoscopic Miniature PIV(MPIV) system based on the concept of the Miniature PIV system which we have already developed. In this paper, we address the design and some first experimental results of the stereoscopic PIV system. The Stereoscopic MPIV system features relatively modest performances, but is considerably smaller, cheaper and easy to handle. The proposed Stereoscopic MPIV system uses two one-chip-only CMOS cameras with digital output. Only two other chips are needed, one for a buffer memory and one for an interfacing logic that controls the system. Images are transferred to a personal computer (PC) via its standard parallel port. No extra hardware is required (in particular, no frame grabber board is needed).

  • PDF

Noise Attenuation Effect According to the Direction of Secondary Sound Source in Duct ANC System (Duct ANC System에서 부가음원 방향별 소음감소효과)

  • Lee, Eung-Suk;Lee, Hyung-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.251-260
    • /
    • 2009
  • In this paper, we studied on an attenuation effect of automobile exhaust noise according to the direction of canceling speaker in ANC system. Automobile exhaust noise was recorded at 800 rpm, 3500 rpm and 5000 rpm of a diesel engine. Directions of canceling speaker can be set to $30^{\circ}$, $90^{\circ}$ and $150^{\circ}$ against the primary noise flow by acrylic ducts to be made for the experimentation. DSP board with TMS320C6416 chip of Texas Instrument Co. used to control the ANC system. The algorithm of this ANC system applied the Filtered-x-LMS algorithm that is modified to compensate for a property of DSP input signal and the secondary-path effect. As an experiment result, the direction of canceling speaker was proved to influence the reduction effect of noise. The $150^{\circ}$ duct in the attenuation effect of noise showed a better result than the $90^{\circ}$ or $30^{\circ}$ duct.

Adaptive PCIe system for TI C66x DSPs (TI C66x DSP를 위한 적응형 PCIe 시스템)

  • Kim, Minjae;Jin, Hwajong;Ahn, Heungseop;Choi, seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.4
    • /
    • pp.31-40
    • /
    • 2019
  • This paper proposes an adaptive PCIe system for TI C66x DSPs. Conventionally, the PCIe system provided by the C66x is a system dependent on the structure in which the primary core writes an application to the DSP memory through the PCIe interface, then activate the secondary core. Due to the dependency between the cores, when developing a project using a PCIe interface, the remaining cores have to be programmed with a concern of the primary core used as the PCIe interface. Therefore, in order to de-couple the connections among the cores, an adaptive PCIe system is proposed, in the paper, in which the cores operate independently compared to the conventional system. Since the core used as the PCIe interface only runs PCIe related operations in the new system, the remaining cores can be fully utilized without concerning the connections with the core for PCIe interface. In order to verify the feasibility of the proposed adaptive PCIe system, the implementations of LTE-A down link, and IEEE 802.11ac are carried out using the evaluation board which includes a TMS320C6670 chip. Altogether, these results support that we demonstrated that the digital signal processing systems with the PCIe Interface can be developed more rapidly by applying the proposed system.

A study on the design and implementation of uplink receiver for BWLL Base Station modem (광대역 무선가입자망 기지국용 모뎀의 상향링크 수신기 설계 및 구현에 관한 연구)

  • 남옥우;김재형
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.307-310
    • /
    • 2001
  • In this paper we describe the design and implementation of uplink receiver for BWLL base station modem. The demodulator consists of digital down converter, matched filter and synchronization circuits. For symbol timing recovery we use Gardner algorithm. And we use forth power method and decision directed method for carrier frequency recovery and phase recovery, respectively. For the sake of performance analysis, we compare simulation results with the board implemented by FPGA which is APEX20KE series chip for Alter. The performance results show it works quite well up to the condition that a frequency offset equal to 4.7% of symbol rate.1

  • PDF

Multi-scale wireless sensor node for health monitoring of civil infrastructure and mechanical systems

  • Taylor, Stuart G.;Farinholt, Kevin M.;Park, Gyuhae;Todd, Michael D.;Farrar, Charles R.
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.661-673
    • /
    • 2010
  • This paper presents recent developments in an extremely compact, wireless impedance sensor node (the WID3, $\underline{W}$ireless $\underline{I}$mpedance $\underline{D}$evice) for use in high-frequency impedance-based structural health monitoring (SHM), sensor diagnostics and validation, and low-frequency (< ~1 kHz) vibration data acquisition. The WID3 is equipped with an impedance chip that can resolve measurements up to 100 kHz, a frequency range ideal for many SHM applications. An integrated set of multiplexers allows the end user to monitor seven piezoelectric sensors from a single sensor node. The WID3 combines on-board processing using a microcontroller, data storage using flash memory, wireless communications capabilities, and a series of internal and external triggering options into a single package to realize a truly comprehensive, self-contained wireless active-sensor node for SHM applications. Furthermore, we recently extended the capability of this device by implementing low-frequency analog-to-digital and digital-to-analog converters so that the same device can measure structural vibration data. The compact sensor node collects relatively low-frequency acceleration measurements to estimate natural frequencies and operational deflection shapes, as well as relatively high-frequency impedance measurements to detect structural damage. Experimental results with application to SHM, sensor diagnostics and low-frequency vibration data acquisition are presented.