• Title/Summary/Keyword: Chip removing

Search Result 45, Processing Time 0.032 seconds

A Mechanistic Model for 3 Dimensional Cutting Force Prediction Considering Ploughing Force in Face Milling (정면밀링가공에서 쟁기력을 고려한 3차원 절삭력 모델링)

  • 권원태;김기대
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2002
  • Cutting force is obtained as a sum of chip removing force and ploughing force. Chip removing force is estimated by multiplying specific cutting pressure by cutting area. Since ploughing force is caused from dullness of a tool, its magnitude is constant if depth of cut is bigger than a certain value. Using the linearity of chip removing force to cutting area and the constancy of ploughing force regardless of depth of cut which is over a certain limit each force is separated from measured cutting force and used to establish cutting force model. New rotation matrix to convert the measured cutting force in reference axes into the forces in cutter axes is obtained by considering that tool angles are projected angles from cutter axes to reference axes.. Spindle tilt is also considered far the model. The predicted cutting force estimated from the model is in good agreement with the measured force.

Modelling Method for Removing Measurement Uncertainty in Chip Impedance Characterization of UHF RFID Tag IC (UHF RFID 태그 칩의 임피던스 산출 불확실성 제거를 위한 모델링 방법)

  • Yang, Jeenmo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1228-1235
    • /
    • 2014
  • Input impedance of UHF RFID tag chip is needed to design a tag. In determining the chip impedance, direct measurement method is adopted commonly. In this paper, problems generated from fixtures that interface between tag chip and coaxial-oriented measurement instrument are investigated and the result of the problems is shown, when the direct measurement method is applied. As an alternative to the method, a modeling method is proposed and its validity and accuracy are shown.

Performance Evaluation of Microchip Removal Device Rotating by Conveyor Belt with Neodymium Permanent Magnet (네오디뮴 영구자석을 이용한 컨베이어벨트 구동형 미세칩 포집장치의 성능 평가)

  • Choi, Sung-Yun;Wang, Jun-hyeong;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.103-109
    • /
    • 2021
  • Fine chips generated by machining have an impact on machine failure and quality of machined products, it is necessary to remove the chips, so the microchip collection and removal device by rotating conveyor belt with neodymium permanent magnets was developed. In this research, to solve the problem for reducing the existing microchips in the tank, a micro-chip removal device by rotating conveyor belt with neodymium permanent magnets developed. In the development of micro-chip removal device, 3D CATIA modeling was used, and the flow analysis and the electromagnetic force analysis were performed with COMSOL Multiphysics program. To evaluate the performance of the prototypes produced, design of experiments (DOE) is used to obtain the effect of neodymium conveyor movement speed on chip removal for the ANOVA analysis of recovered powders. An experiment was conducted to investigate the effect of the conveyor feed rate on the chip removal performance in detail. As a result of the experiment, it was confirmed that the slower the feeding speed of the fine chip removing device, the more efficient the chip removal.

Study of clean laser decapsulation process (친환경 레이저 디캡슐레이션에 관한 연구)

  • Hong, Yun-Seok;Mun, Seong-Uk;Nam, Gi-Jung;Choe, Ji-Hun;Yun, Myeon-Geun
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2006.11a
    • /
    • pp.103-107
    • /
    • 2006
  • Decapsulation of EMC(Epoxy Molding Compound) in package device is a method used to inspect inside of device by removing plastic molding. So far, chemical etching and mechanical grinding methods have been used widely. Recently, several works using laser have been carried out. This method has advantages with fast process time and precision than conventional methods because of noncontact process. Also, laser process is a clean process because of removing EMC directly without using toxic chemicals. The wavelength of laser used in this study is 355nm. Key parameters of removing EMC are laser power, scan speed, and number of scans of laser. It if confirmed that laser decapsulation is a useful process to inspect inside a device with a small thermal damage to chip surface.

  • PDF

Method of Ga removal from a specimen on a microelectromechanical system-based chip for in-situ transmission electron microscopy

  • Yena Kwon;Byeong-Seon An;Yeon-Ju Shin;Cheol-Woong Yang
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.22.1-22.6
    • /
    • 2020
  • In-situ transmission electron microscopy (TEM) holders that employ a chip-type specimen stage have been widely utilized in recent years. The specimen on the microelectromechanical system (MEMS)-based chip is commonly prepared by focused ion beam (FIB) milling and ex-situ lift-out (EXLO). However, the FIB-milled thin-foil specimens are inevitably contaminated with Ga+ ions. When these specimens are heated for real time observation, the Ga+ ions influence the reaction or aggregate in the protection layer. An effective method of removing the Ga residue by Ar+ ion milling within FIB system was explored in this study. However, the Ga residue remained in the thin-foil specimen that was extracted by EXLO from the trench after the conduct of Ar+ ion milling. To address this drawback, the thin-foil specimen was attached to an FIB lift-out grid, subjected to Ar+ ion milling, and subsequently transferred to an MEMS-based chip by EXLO. The removal of the Ga residue was confirmed by energy dispersive spectroscopy.

A Study on Fluxless Solder Flip Chip Bonding Using Plasma & Ultrasonic Wave (플라즈마와 초음파를 이용한 무플럭스 솔데 플립칩 접합에 관한 연구)

  • 홍순민;강춘식;정재필
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.138-140
    • /
    • 2001
  • Fluxless flip chip bonding using plasma & ultrasonic wave was investigated in order to evaluate the effect of plasma & ultrasonic treatment on the bondability of the Sn-3.5wt%Ag solder bumped die to TSM-coated glass substrate. The $Ar+10%H_2plasma$ was effective in removing tin oxide on solder surface. The die shear strength of the plasma-treated Si-chip is higher than that of non-treated specimen but lower than that of specimen bonded with flux. The die shear strength with the bonding load at 25W ultrasonic power increased to 0.8N/bump for all bonding temperature but decreased above 1.0N/bump.

  • PDF

The Microbe Removing Characteristics Caused by Dirty Water Using a Simple Pulsed Power System

  • Kim, Hee-je;Song, Keun-ju;Song, Woo-Jung;Kim, Su-Weon;Park, Jin--Young;Joung, Jong-Han
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.3
    • /
    • pp.91-95
    • /
    • 2004
  • The pulsed power system is widely available for use in pulse generator applications. Generally, the pulse generator is required for very short pulse width and high peak value. We have designed and fabricated our own pulsed type power system and through its use, we investigated microbe removal characteristics. This paper introduces a simple pulsed power system for removing various microbes caused by dirty water. This system includes a 2 times power supply circuit, IR2110 operated by using a fixed voltage regulator 7812 and 7805, and the switching MOSFET (Metal Oxide Semiconductor Field Effect Transistor). We can also control this process by using a PIC one chip microprocessor. As a result, we can obtain good removing characteristics of various microbes by adjusting the charging voltage, the pulse repetition rate and the electrical field inducing time.

Environment-Friendly Metal Cutting Technology using Cooled Air (냉각공기에 의한 환경 친화적 절삭가공기술)

  • Lee, Jong-Hang;Cho, Woong-Shik;Chung, Joon-Ki;Park, Ceol-Woo;Kim, Young-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.114-120
    • /
    • 2001
  • It is necessary to develop a new metal cutting technology which does not use cutting fluid, since cutting fluid can have undesirable effect on workers's health and working environment. For this to be possible, it is necessary to replace the conventional method of using cutting fluid, whose basic functions are removing chip and heat, and providing lubrication between tool and chip. In this work, cooled air is utilized in order to replace cutting fluid. Experiments were carried out while cutting workpiece with HSS flat endmill under a variety of supply conditions for cooled air. Also the performance characteristics of the air cooling system. which was built for the experiments, were carefully analyzed. For the reliable operation of air cooling system. moisture contained in the cooled air had to be removed before being supplied to the workpiece and tools. It was found that depending on the amount of its flow rate the temperature of cooled air changes at the time of injection from the nozzle. The flow rate of cooled air also plays an important role in removing the accumulated chip on the workpiece. After comparing the flank wear for the three cases of using cooled air, cutting fluid, and pure dry technique, it was demonstrated that the level of flank wear was similar for the cases of cooled air and cutting fluid. The pure dry technique, however, showed higher level of flank wear than cooled air.

  • PDF

The Characteristics on the Removal of Bacteria Using High Voltage and High Frequency Pulsed Power System (고압 고주파 펄스 파워 시스템을 이용한 세균 제거 특성)

  • Shim, Ji-Young;Kim, Mi-Jeong;Park, Je-Wook;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1416-1417
    • /
    • 2007
  • The high frequency pulsed power system is widely available for use in high frequency generator applications. We designed and fabricated our own high frequency pulsed power system to obtain very sort pulse width and high peak value and investigated microbe removal characteristics using it. This paper introduces a simple high voltage high frequency pulsed power system for removing various bacteria caused by dirty water. This system include power supply circuit, switching MOSFET, and flyback converter. We can also control the switching using a PIC one chip microprocessor. As a result, we can obtain good removing characteristics of various bacteria by adjusting the charging voltage, the pulse repetition rate and the electrical field inducing time.

  • PDF

Fabrication of Low Temperature Cofired Ceramic (LTCC) Chip Couplers for High Frequencies : I, Effects of Binder Burnout Process on the Formation of Electrode Line (고주파용 저온 동시소성 세라믹(LTCC)칩 커플러 제조: I. 전극형성에 대한 결합제 분해공정의 영향)

  • 조남태;심광보;이선우;구기덕
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.6
    • /
    • pp.583-589
    • /
    • 1999
  • In the fabrication of ceramic chip couples for high frequency application such as the mobile communication equipment the formation of electrode lines and Ag diffusion were investigated with heat treatment conditions for removing organic binders. The deformation and densification of the electrode line greatly depended on the binder burnout process due to the overlapped temperature zone near 400$^{\circ}C$ of the binder dissociation and the solid phase sintering of the silver electrode. Ag ions were diffused into the glass ceramic substrate. The Ag diffusion was led by the glassy phase containing Pb ions rather than by the crystalline phase containing Ca ions. The fact suggests that the Ag diffusion could be controlled by managing the composition of the glass ceramic substrate.

  • PDF