• 제목/요약/키워드: Chip flow angle

검색결과 26건 처리시간 0.024초

선삭가공의 칩형상 해석 (I) -칩흐름각 해석- (Analysis of the Chip Shape in Turing (I) -Analysis of the Chip Flow Angle-)

  • 이영문;최수준;우덕진
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.139-144
    • /
    • 1991
  • 본 연구에서는 절삭가공시 생성되는 칩의 형상해석의 일환으로 2차원 절삭시 칩은 절삭날에 수직한 방향으로 공구경사면을 흘러간다는 기본적인 전제조건과 Kluft 등의 칩흐름각 예측에 대한 제안중 노으즈반경(nose radius) 및 기울임각의 영향을 중 첩시키고, 또한 절삭날에 연하여 미변형 칩두께(undeformed chip thickness)가 달라지 는 경우 칩흐름의 세기는 이에 비례한다는 Baart등의 가정을 도입하여 칩흐름각에 대 한 새로운 해석을 시도하였다.

칩브레이커 형상변수에 의한 칩유동각 예측 (The Prediction of Chip Flow Angle on chip Breaker Shape Parameters)

  • 박승근
    • 한국생산제조학회지
    • /
    • 제9권2호
    • /
    • pp.96-101
    • /
    • 2000
  • In machining with cutting tool inserts having complex chip groove shape the flow curl and breaking pattern of the chip are different than in flat-face inserts. In the present work an effort is made to understand the three basic phe-nomena occurring in a chip since its formation in machining with groove type and pattern type inserts. These are the ini-tial chip flow the subsequent development of up and side curl and the final chip breaking due to the development of tor-sional and bending stresses. in this paper chip flow angle in a groove type and pattern type inserts. The expres-sion for chip flow angle in groove type and pattern type inserts is also verified experimentally using high speed filming techniques.

  • PDF

칩브레이커 형상변수에 의한 칩유동각 예측 (The Prediction of Chip Flow Angle on Chip Breaker Shape Parameters)

  • 박승근
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.381-386
    • /
    • 1999
  • In machining with cutting tool inserts having complex chip groove shape, the flow, curl and breaking patterns of the chip are different than in flat-face type inserts. In the present work, an effort is made to understand the three basic phenomena occurring in a chip since its formation in machining with groove type and pattern type inserts. These are the initial chip flow, the subsequent development of up and side curl and the final chip breaking due to the development of torsional and banding stresses. In this paper, chip flow angle in a groove type and pattern type inserts. The expression for chip flow angle in groove type and pattern type insets is also verified experimentally using high speed filming techniques.

  • PDF

신形 칩折斷具에 관한 實驗的 硏究 (제1보) (An Experimental Study on New Type Chip Brakeer(Part 1))

  • 손명환;이호철
    • 대한기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.1121-1140
    • /
    • 1992
  • 본 연구에서는 부착형 칩절단구의 경사면 대신에 원고면으로 형성한 형태 칩 절단구를 고찰하고, 재래형과 비교하여 더 효과적인 칩절단구를 개발 실용화하고자 한 다. 가공법으로서는 연속칩의 처리가 가장 곤란한 선삭을, 공작물로서는 연속칩이 가장 잘 생성되는 SM 20 C의 연강을, 공구재료로서는 P계열의 초경합금을 써서 저속에 서 고속절삭속도까지 시험하였다.

화상처리를 이용한 칩유동의 해석에 관한 연구 (A study on the analysis of chip flow by the image processing)

  • 백인환;이형대
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.811-815
    • /
    • 1990
  • This paper describes the method on image acquisition and image processing in the turning process. The formation of discontinuous chips during high-speed oblique cutting without lubricant was observed by means of video camera recorder and stroboscope. The image processing technique for chip flow is described and the results are presented for variable feeds. It is concluded that experimental values of chip flow angle are similar to theoretical values of Stabler's rule.

  • PDF

볼 엔드밀 헬릭스 각에 따른 절삭 특성 (Cutting Characteristics of Ball-end Mill with Different Helix Angle)

  • 조철용;류시형
    • 한국정밀공학회지
    • /
    • 제31권5호
    • /
    • pp.395-401
    • /
    • 2014
  • Development of five axis tool grinding machine and CAD/CAM systems increase tool design flexibility. In this research, investigated are cutting characteristics of ball-end mill with different helix angle. Special WC ball-end mills with $0^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$ helix angles are designed and used in various cutting tests. Machining performance according to helix angle variation is evaluated from cutting forces, surface roughness, tool wear, produced chip shape, and vibration characteristics. The ball-end mill with $10^{\circ}$ helix angle shows the best cutting performance due to appropriate chip load distribution and smooth chip flow. This research can be used for cutting edge geometry optimization and novel design of ball-end mill.

3차원 절삭시 칩-공구 마찰 및 전단 특성 해석 (Analysis of Chip-Tool Friction and Shear Characteristics in 3-D Cutting Process)

  • 이영문;최원식;송태성;박태준;장은실
    • 한국정밀공학회지
    • /
    • 제16권6호
    • /
    • pp.190-196
    • /
    • 1999
  • In this study, a procedure for analyzing chip-tool friction and shear processes in 3-D cutting with a single point tool has been established. The edge of a single point tool including circular nose is modified to the equivalent straight edge, then 3-D cutting with a single point tool is reduced to equivalent oblique cutting. Transforming the conventional coordinate systems and using the measured three component of cutting forces, force components on the rake face and the shear plane of the equivalent oblique cutting system can be obtained. And it can be possible to assess the chip-tool friction and shear characteristics in 3-D cutting with a single point tool.

  • PDF

칩 말림 방지를 위한 고압 분사 노즐 설계에 관한 연구 (A Study on Design of High Pressure Injection Nozzle for Avoiding Chip Curling)

  • 이중섭;윤지훈;정인국;송철기;서정세
    • 한국생산제조학회지
    • /
    • 제20권6호
    • /
    • pp.793-798
    • /
    • 2011
  • In this study, it was grasped to the flow characteristics of cutting fluid injected by nozzle installed in high pressure holder for avoiding chip curling occurred during machining process. And for avoiding chip curling, the possibility of elimination under various chip conditions was checked. Consequently, the highest discharging pressure and velocity was shown in 150 of nozzle inflow angle. Also as nozzle outlet diameter is small, the pressure and velocity of injected flow are high. Moreover, It could be confirmed that width and thickness of chip have no direct effect on chip elimination and it is achieved by torque generated by injected cutting fluid.

톱니형Chip의 절삭기구와 Energy에 관한 연구 (A Study on the Cutting Mechanism and Energy with Saw-toothed Chip)

  • 김항영;오석형;서남섭
    • 한국정밀공학회지
    • /
    • 제4권3호
    • /
    • pp.44-51
    • /
    • 1987
  • In metal cutting various types of chips are produced in consequence of cutting conditions. Flow-type chips have been studied in most cases because they are easier to be analyzed, but the actual surfaces of chips are not smooth, but crushed. This paper deals with saw-toothed chips, special types of flow-type chips, which have deep concaves and high convexes and sharp angles on the free surface. I tried to establish the theory of saw-toothed chip mechanism through experimental observation, that is, the mathmatical model of the cutting energy and cutting mechanism through the geometrical observation of the chips by using a microscope. The results obtained are as follows: 1. The mechanism of saw-toothed chips is diffenent from that of general flow-chips. 2. In the case of saw-toothed chips, the shear angle must be measured by the hypotenuse angle and the rake angle, and the shear angle is more affected by the rake angle than by the hypotenbuse angle. 3. The friction angle is represented by .beta. = . pi. /4+ .alpha./ sub n/- .phi. which is different from Merchant's equation. 4. The pitch and the slip are greatly influenced by depth of cut, but the influence of the rake angle on it is small. 5. The normal stress and the shear stress on the shear plane decrease with the increase of the cutting depth, and they are almost independent on the variation of a rake angle. 6. The unit friction energy on the tool face, the unit shear energy on the shear plane, and the total cutting energy per unit volume decrease with the increase of rake angle and cutting depth.

  • PDF

Analysis of 3-D Cutting Process with Single Point Tool

  • Lee, Young-Moon;Park, Won-Sik;Song, Tae-Seong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권1호
    • /
    • pp.15-21
    • /
    • 2000
  • This study presents a procedure for analyzing chip-tool friction and shear processes in 3-D cutting with a single point tool. The edge of a single point tool including a circular nose is modified to an equivalent straight edge, thereby reducing the 3-D cutting with a single point tool to the equivalent of oblique cutting. Then, by transforming the conventional coordinate systems and using the measurements of three cutting force components, the force components on the rake face and shear plane of the equivalent oblique cutting system can be obtained. As a result, the chip-tool friction and shear characteristics of 3-D cutting with a single point tool can be assessed.

  • PDF