• Title/Summary/Keyword: Chip control

Search Result 1,348, Processing Time 0.031 seconds

Image Scrambling for One-Chip JPEG Applications (One-Chip JPEG 적용을 위한 영상 스크램블링)

  • 권정익;원치선;김재공
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 1994.11a
    • /
    • pp.193-202
    • /
    • 1994
  • In this paper, we investigate possible scrambling methods for the JPEG(Joint Photographic Export Group) still image compression standard. In particular, we compare the conventional line rotation and line permutation methods to the DCT block scrambling in terms of the number of bits to be increased and the easiness of buffer control. Computer simulation results show that the DCT block scrambling method is suitable for both data security and buffer control in one-chip JPEG applications.

  • PDF

The Design of DSP System for Power Conversion System Controller (전력변환 시스템 제어를 위한 고속 디지탈 신호처리 시스템의 설계)

  • Kim, J.S.;Sul, S.K.;Park, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.219-222
    • /
    • 1991
  • It is difficult to adapt modern control theory to power conversion system for the price of real time control H/W and the difficulty of S/W implementation. But recent development of large integrated circuit make it possible that One-Chip microprocessor processes high speed arithmatic calculation used in control theory. Specially this chip is called Digital Signal Processing chip. So, this research developes high performance, high reliable digital control system using TMS320C30 of Texas Instrument for real time control in power conversion system.

  • PDF

Development of A New Device for Controlling Infinitesimal Flows inside a Lab-On-A-Chip and Its Practical Application (랩온어칩 내부 미세유동 제어를 위한 새로운 장치의 개발 및 적용)

  • Kim, Bo-Ram;Kim, Guk-Bae;Lee, Sang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.305-308
    • /
    • 2006
  • For controlling micro-flows inside a LOC (lab-on-a-chip) a syringe pump or an electronic device for EOF(electro-osmotic flow) have been used in general. However, these devices are so large and heavy that they are burdensome in the development of a portable micro-TAS (total analysis system). In this study, a new flow control system employing pressure chambers, digital switches and speed controllers was developed. This system could effectively control the micro-scale flows inside a LOC without any mechanical actuators or electronic devices We also checked the feasibility of this new control system by applying it to a LOC of micro-mixer type. Performance tests show that the developed control system has very good performance. Because the flow rate in LOC is controlled easily by throttling the speed controller, the flows in complicate microchannels network can be also controlled precisely.

  • PDF

An On-Chip Test Clock Control Scheme for Circuit Aging Monitoring

  • Yi, Hyunbean
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.1
    • /
    • pp.71-78
    • /
    • 2013
  • In highly reliable and durable systems, failures due to aging might result in catastrophes. Aging monitoring techniques to prevent catastrophes by predicting such a failure are required. Aging can be monitored by performing a delay test at faster clocks than functional clock in field and checking the current delay state from the test clock frequencies at which the delay test is passed or failed. In this paper, we focus on test clock control scheme for a system-on-chip (SoC) with multiple clock domains. We describe limitations of existing at-speed test clock control methods and present an on-chip faster-than-at-speed test clock control scheme for intra/inter-clock domain test. Experimental results show our simulation results and area analysis. With a simple control scheme, with low area overhead, and without any modification of scan architecture, the proposed method enables faster-than-at-speed test of SoCs with multiple clock domains.

Fuzzy Control of Computer Automatic System with Color Matching and Dispensing Functions (칼라 맞춤 및 분배 기능을 가진 컴퓨터 자동화 시스템의 퍼지 제어)

  • 한일석;류상문;임태우;안태천
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.146-149
    • /
    • 2000
  • In this paper, Computer Colour Matching and Kitchen System (CCMKS) is developed on the basis of delphi package and one-chip processor with fuzzy-PID control. CCMKS will be widely used in the colour dyeing industry as an integrated colour matching and dispensing system which have more advantages than the conventional matching or dispensing system, when controlling the real dyeing processes. Delphi is utilized in making database and search/matching routes. The developed matching function reduces the search and matching time to about one third. One-chip processor is designed and manufactured for the distributed control of three-phase induction motors. Fuzzy-PID control is applied to the speed control of three-phase induction motors for a very precise weight of colour at CCMKS. The developed kitchen function decreases the dispensing time to about one twentieth. The experimental results show CCMKS has more excellent search time, more precise weight and much high fidelity than conventional colour matching or dispensing system, in the performance.

  • PDF

On-Chip Debug Architecture for Multicore Processor

  • Park, Hyeong-Bae;Xu, Jing-Zhe;Kim, Kil-Hyun;Park, Ju-Sung
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.44-54
    • /
    • 2012
  • Because of the intrinsic lack of internal-system observability and controllability in highly integrated multicore processors, very restricted access is allowed for the debugging of erroneous chip behavior. Therefore, the building of an efficient debug function is an important consideration in the design of multicore processors. In this paper, we propose a flexible on-chip debug architecture that embeds a special logic supporting the debug functionality in the multicore processor. It is designed to support run-stop-type debug functions that can halt and control the execution of the multicore processor at breakpoint events and inspect the possible causes of any errors. The debug architecture consists of the following three functional components: the core debug support block, the multicore debug support block, and the debug interface and control block. By embedding this debug infrastructure, the embedded processor cores within the multicore processor can be debugged simultaneously as well as independently. The debug control is performed by employing a JTAG-based scanning operation. We apply this on-chip debug architecture to build a debugger for a prototype multicore processor and demonstrate the validity and scalability of our approach.

Development of Pattern Classifying System for cDNA-Chip Image Data Analysis

  • Kim, Dae-Wook;Park, Chang-Hyun;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.838-841
    • /
    • 2005
  • DNA Chip is able to show DNA-Data that includes diseases of sample to User by using complementary characters of DNA. So this paper studied Neural Network algorithm for Image data processing of DNA-chip. DNA chip outputs image data of colors and intensities of lights when some sample DNA is putted on DNA-chip, and we can classify pattern of these image data on user pc environment through artificial neural network and some of image processing algorithms. Ultimate aim is developing of pattern classifying algorithm, simulating this algorithm and so getting information of one's diseases through applying this algorithm. Namely, this paper study artificial neural network algorithm for classifying pattern of image data that is obtained from DNA-chip. And, by using histogram, gradient edge, ANN and learning algorithm, we can analyze and classifying pattern of this DNA-chip image data. so we are able to monitor, and simulating this algorithm.

  • PDF

VHDL Chip Set Design and implementation for Memory Tester Algorithm (Memory Tester 알고리즘의 VHDL Chip Set 설계 및 검증)

  • Jeong, Ji-Won;Gang, Chang-Heon;Choe, Chang;Park, Jong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.924-927
    • /
    • 2003
  • In this paper, we design the memory tester chip set playing an important role in the memory tester as central parts. Memory tester has the sixteen inner instructions to control the test sequence and the address and data signals to DUT. These instructions are saved in memory with each chip such as sequence chip and address/data generator chip. Sequence chip controls the test sequence according to instructions saved in the memory. And Generator chip generates the address and data signals according to instructions saved in the memory, too.

  • PDF

Kinematical Differences of the Male Professional Golfers' 30 Yard Chip Shot and Pitch Shot Motion (남자프로골퍼의 30 야드 칩샷과 피치샷 동작의 운동학적 차이)

  • Pyun, Eun-Kyung;Park, Young-Hoon;Youm, Chang-Hong;Sun, Sheng;Seo, Kuk-Woong;Seo, Kook-Eun
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.177-185
    • /
    • 2007
  • Even though there were no clear definitions of the short game and short game distance, short game capability is crucial for a good golf score. Generally, chip shot and pitch shot are regarded as two principal components of the short game. Chip shot is a short, low trajectory shot played to the green or from trouble back into play. Pitch shot is a high trajectory shot of short length. Biomechanical studies were conducted usually to analyze full swing and putting motions. The purpose of the study was to reveal the kinematical differences between professional golfers' 30 yard $53^{\circ}wedge$ chip shot and $56^{\circ}wedge$ pitch shot motions. Fifteen male professional golfers were recruited for the study. Kinematical data were collected by the 60 Hz three-dimensional motion analysis system. Statistical comparisons were made by paired t-test, ANOVA, and Duncan of the SPSS 12.0K with the $\alpha$ value of .05. Results show that both the left hand and the ball were placed left of the center of the left and right foot at address. The left hand position of the chip shot was significantly left side of that of the pitch shot. But the ball position of the pitch shot was significantly right side of that of the chip shot. All body segments aligned to the left of the target line, open, at address. Except shoulder, there were no significant pelvis, knee, and feet alignment differences between chip shot and pitch shot. These differences at address seem for the ball height control. Pitch shot swing motions(the shoulder and pelvis rotation and the club head travel distance) were significantly bigger than those of the chip shot. Club head velocity of the pitch shot was significantly faster than that of the chip shot at the moment of impact. This was for the same shot length control with different lofted clubs. Swing motion differences seem mainly caused by the same shot length control with different ball height control.

A Study on the Classification and Prediction of the Chip Type under the Specified Cutting Conditions in Turning (선삭가공시 절삭조건에 의한 Chip형태의 분류와 예측에 관한 연구)

  • Sim, G.J.;Cheong, C.Y.;Seo, N.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.53-62
    • /
    • 1995
  • In recent years, the rapid development of the machine tool and tough insert has made metal removal rates increase, and automatic system without human supervision requires a higher degree reliability of machining process. Therefore the control of chips is one of the important topics which deserves much attention. The chip classification was made based upon standard deviation of the mean cutting force measured by a tool dynamometer. STS304was chosen as the workpiece which is known as the difficult-to-cut material and mainly saw-toothed chip produced, and the chip type according to the standard deviation of mean cutting force was classified into five categories in this experiment. Long continuous type chip which interrupts the normal cutting process, and damages the operator, tool and workpiece has low standard deviation value, while short broken type chip, which is favourable chip for disposal, has relatively large standard deviation value. In addition, we investigated the possibility that the chip type can be predicted analyzing the relationship between chip type and cutting condition by the trained neural network, and obtained favourable results by which the chip type can be predicted with cutting conditon before cutting process.

  • PDF