
44 Hyeongbae Park et al. © 2012 ETRI Journal, Volume 34, Number 1, February 2012

Because of the intrinsic lack of internal-system
observability and controllability in highly integrated
multicore processors, very restricted access is allowed for
the debugging of erroneous chip behavior. Therefore, the
building of an efficient debug function is an important
consideration in the design of multicore processors. In this
paper, we propose a flexible on-chip debug architecture
that embeds a special logic supporting the debug
functionality in the multicore processor. It is designed to
support run-stop-type debug functions that can halt and
control the execution of the multicore processor at
breakpoint events and inspect the possible causes of any
errors. The debug architecture consists of the following
three functional components: the core debug support
block, the multicore debug support block, and the debug
interface and control block. By embedding this debug
infrastructure, the embedded processor cores within the
multicore processor can be debugged simultaneously as
well as independently. The debug control is performed by
employing a JTAG-based scanning operation. We apply
this on-chip debug architecture to build a debugger for a
prototype multicore processor and demonstrate the
validity and scalability of our approach.

Keywords: Design-for-debug, on-chip debug, processor
debugger, multicore processor debugging, JTAG-based
debugging.

Manuscript received Mar. 21, 2011; revised July 3, 2011; accepted July 18, 2011.
Hyeongbae Park (phone: +82 51 510 1702, hbpark@pusan.ac.kr), Jing-Zhe Xu

(kchuh@pusan.ac.kr), Kil Hyun Kim (k85123@pusan.ac.kr), and Ju Sung Park
(juspark@pusan.ac.kr) are with the Department of Electronics and Electrical Engineering,
Pusan National University, Busan, Rep. of Korea.

http://dx.doi.org/10.4218/etrij.12.0111.0172

I. Introduction

In recent years, the multicore processor containing two or
more processor cores on a single chip has been widely used in
embedded systems that require high processing power, such as
networking, communication, signal processing, and
multimedia systems. The design of a multicore processor
involves many difficult problems that need to be solved, such
as interconnection, cache coherency, scheduling,
synchronization, and programming model. [1]-[3]. Apart from
these complexities, the multicore architecture of the processor
presents new challenges in debugging.

Because of the dramatic increase in processor performance
and the intrinsic lack of internal-system observability and
controllability in highly integrated multicore processors,
conventional debugging approaches that implement debug
functions from outside the processor chip can no longer
provide efficient debugging capabilities, for example, in-circuit
emulators or ROM monitors [4]. To address these difficulties,
most multicore processors employ an on-chip debug method,
also known as design-for-debug (DfD), with a special
hardware debug function embedded in the processor chip. As
multicore processors can have diverse structures and
architectures with a wide range of processor cores, the
implementation of effective debug functions tailored to the
target multicore processor is certainly one of the most
important design challenges. There are several types of on-chip
debug approaches that focus on different processor operations
and support different debug functionalities.

On-chip debug functionalities can be classified into two
types based on the supported debugging method. The first type
features a run-stop (intrusive) scheme that uses execution
control to start a processor and then stops it on a breakpoint
placed at a point of interest to allow inspection of the
processor’s state, for example, ARM’s Embedded-ICE and

On-Chip Debug Architecture for Multicore Processor

Hyeongbae Park, Jing-Zhe Xu, Kil Hyun Kim, and Ju Sung Park

ETRI Journal, Volume 34, Number 1, February 2012 Hyeongbae Park et al. 45

MIPS’s Extended JTAG (EJTAG) [5]-[8]. The second type
uses a real-time trace (non-intrusive) scheme that stores the
debug information (such as program flow or memory access
address/value) into the internal or the external memory without
halting the processor execution, for example, ARM’s
Embedded Trace Macrocell (ETM) and MIPS’s Program and
Data Trace (PDtrace) [9], [10]. This method complements the
run-stop debugging by providing additional information about
the timing behavior of the processor operation [11].

Although, the real-time trace scheme is a more efficient
debugging solution than the run-stop scheme, with respect to
supported debugging capability, it may not be the appropriate
debug solution in some cases due to complexity and hardware
overheads. It requires on-chip or off-chip memory to store the
traced debug data and a set of trace ports to transfer debug data
out of the chip at high speeds, and it also needs an efficient
compression/decompression hardware to reduce the amount of
debug data [6], [8], [12].

Different from the above conventional processor-centric
debug solutions focusing on the processor’s computational
operations and its interaction with main memory, in recent
years, new research has introduced communication-centric
debug solutions for network-on-chip (NoC)-based multicore
processors to make the interactions between the intellectual
property (IP) blocks via the communication architecture
observable and controllable [13]-[15].

Among the diverse debug approaches, the processor-centric
debug solution employing the run-stop scheme gives the
developer more power to observe the functional behavior of
the processor core at the exact possible erroneous point, in a
controlled manner. This debug method allows each embedded
processor core of the multicore processor to be controlled and
accessed independently. In addition, it must be able to provide
special debug capabilities to handle many of the debugging
issues that are specific to a multicore architecture processor,
such as interoperability, communication, and synchronization
between the embedded processor cores.

In this study, we propose on-chip debug architecture for the
multicore processor that supports processor-centric debug
operations in a run-stop fashion. It is capable of controlling the
target multicore processor to perform debug operations. Further,
it also capable of observing the multicore processor’s internal
status to inspect the root cause of erroneous behavior. Our main
objective is to develop a flexible and practical processor-centric
run-stop debug solution that can be readily integrated into
multicore processors at the register-transfer level (RTL) with
minimum modifications, rather than defining an extensive
standard for a wide range of debug applications.

This paper is organized as follows. In section II, we review
the existing debug approaches for multicore processors. In

section III, we present a brief overview of the proposed on-chip
debug architecture for multicore processors. The three
functional blocks of the debug architecture are described in
detail in sections IV, V, and VI. The implementation results are
explained in section VII, and the concluding remarks are made
in section VIII.

II. Related Work

Most of the recent multicore processors employ an on-chip
debug method that adds special debug-support IP blocks into
the design. Researchers have proposed several on-chip debug
methods for a multicore processor. First Silicon Ltd. presented
an integrated debug platform including a software debugger
called multicore embedded debug that contained an on-chip
instrument block as the core debug supporting module,
HyperDebug block for debugging intercore communication,
and HyperJTAG [16], [17]. To address a diverse range of
debug requirements, it introduced system-level debug solutions
that can monitor and trace embedded cores during normal
operation. ARM proposed debug methodologies called
CoreSight for ARM-based and AMBA-based multicore
processor [5], [6], [18], [19]. As the CoreSignt is designed for
an ARM-based system-on-chip (SoC), it cannot provide an
appropriate debug solution when the target multicore processor
does not employ ARM cores and an AMBA system bus or
when embedded processor cores do not have built-in debug
functions.

In recent years, debug standardization research has been
widely carried out in an effort to bring together IP core
providers, semiconductor manufacturers, and vendors of debug
tools in five organizations: the Nexus 5001, Mobile Industry
Processor Interface (MIPI) Test and Debug, IEEE P1149.7,
IEEE P1687, and Open Core Protocol International Partnership
(OCP-IP) Debug working groups [20]. As the groups’ joint
goal is to standardize the debug interfaces between different IP
cores on a chip as well as between different chips, and the
external debug equipment and tools, they may not offer
practical debug solutions for the multicore architecture
processor.

There have been several studies on on-chip debug
implementations based on the following standards for
multicore processors: Nexus 5001, IEEE std. 1500, and OCP-
IP [21]-[24]. To make the embedded processor cores
compatible with these standards, a designer must develop an
interface block, a so-called wrapper, to wrap around the
embedded processor cores to connect them using the common
interface protocol. This wrapper circuit must include a core
debug supporting logic to allow the embedded cores to be
controlled and debugged according to the required debug

46 Hyeongbae Park et al. ETRI Journal, Volume 34, Number 1, February 2012

operations. This standard-based debug implementation scheme
can be useful in developing the debug solutions of certain
multicore processors, which employ a complex intercore
communication method such as NoC, because it can facilitate
the connection of debug units between the embedded cores.
However, it is possible that this approach may be more difficult
and complex when the multicore processor does not adopt the
standard-based interface method.

As mentioned above, depending on the implementation
method and the supported debug functionality, there are
various kinds of debug solutions for multicore processors. In
this study, we focused on designing a flexible and scalable on-
chip debug infrastructure that can provide the processor-centric
run-stop debug functionalities on multicore architecture
processors. We also discuss its application method.

III. Multicore On-Chip Debug Architecture: Overview

In this section, we present an overview of the proposed
processor-centric debug architecture, called multicore on-chip
debug (MOCD). The details follow in the later sections. Figure
1 shows the block diagram of the debug architecture and the
relationship between the functional units on the multicore
processor with respect to the important signals.

The debug architecture consists of three functional units: the
core debug support block, the multicore debug support block,
and the debug interface and control block. The core debug
support block, called embedded debug unit (EDU), is
embedded into each processor core within the target multicore
processor to support run-stop debug functionalities. By
embedding this EDU block, each processor core can be
accessed and debugged independently by using basic debug
functions, common to most processors and IEEE 1149.1
JTAG-based debug implementations, including breakpoints
and watchpoints, single stepping, read/write register, and
read/write memory. Multiple EDU blocks can monitor each
embedded processor core’s operation separately. When one of
the processor cores raises a breakpoint event, other processors
that are executing relevant tasks must be stopped immediately
following the condition that raised the event so that the possible
debugging point is not lost [25], [26]. For this concurrent debug
operation, the EDU blocks work in conjunction with the
multicore debug support block, called the multicore debug
support unit (MDSU) that includes the clock controller module
and cross breakpoint manager module. The MDSU block can
control the execution of all the embedded processor cores and
other hardware IP according to several configuration registers.
As shown in Fig. 1, JTAG is used for the debug interface and
control [27]. This JTAG block has extended features to
facilitate debugging of a multicore processor, which allows all

Fig. 1. Overall organization of MOCD architecture on a multicore
processor that is composed of three functional blocks:
EDU, MDSU, and JTAG.

Processor
core 0

.....

EDU
Processor

core 1

EDU
Processor

core N

EDU

Interconnection

JTAG

TCK

TMS
TDI

nTRST
TDO
SEL

ext_clks MDSU
(clock controller, cross breakpoint manager)

embedded processor cores to be accessed only through a single
JTAG connection.

Since the proposed debug architecture supports run-stop-
type debugging operations, the processor execution is stopped
at a point of interest to inspect its internal status. Therefore,
each processor core has two modes of operation, namely, the
run mode and the stop mode. The run mode represents the
processor’s normal operation. Once a breakpoint condition
occurs, the processor enters into the stop mode, indicating that
the processor core is halted for debugging. When the debug
operations are complete, the operation mode is switched back
to the run mode. For this run-stop operation, as shown in Fig. 1,
the internal clock input of each processor core is supplied from
the clock controller of the MDSU block and not directly
connected to the external clock (ext_clk). This approach
enables the internal clock of each processor core to be
controlled for performing the debug operations. Due to this
run-stop debug operation, the processor cores need to be
modified and extended to manage this mode-switching
operation at the breakpoint address.

In the following sections, we will describe the function and
relationship of the three functional units (EDU, MDSU, and
JTAG) and provide an overview of how to integrate these with
a given multicore processor.

IV. Embedded Debug Unit

The EDU block is a core-debug-supporting hardware block
that can be embedded into each processor core to support
debug capabilities on a multicore processor. Figure 2 shows the
structure of the EDU block and the connection signals that are
required to interface it with the processor core.

The EDU block can be divided into the following three
functional modules: comparator, switch mode controller
(SMC), and IEEE 1149.1 boundary scan chain. The
comparator module is designed to detect the breakpoint
condition and the scan chain module is used to inspect the

ETRI Journal, Volume 34, Number 1, February 2012 Hyeongbae Park et al. 47

Fig. 2. EDU block is a core debug supporting hardware block that
can be embedded into the processor core.

SMC

Processor core

Scan
chain

TAP signals

Memory
access
signals

EDU

TAP signals

Comparator
int_bkpt_en

Controlled clk
pulse from clock

controller

stop_mode_en ext_bkpt_en

core_clk

processor core’s internal status. The SMC module serves to
control and interact with the processor core through several
interface signals, to handle the mode-switching operation
properly (between the stop mode and the run mode).

Because of this mode-switching operation, the processor
core needs to have appropriate functions and interface signals
that enable the EDU block to control the core’s execution for
performing debug operations. In the following three
subsections (IV.1, IV.2, and IV.3), we describe the functions of
the three modules. In subsection IV.4, we discuss how to
interface them with a processor core.

1. Comparator

The comparator module involves a number of registers and
one comparator element. It can monitor and detect the
breakpoint condition, by comparing the memory access signals
of the processor core (including the address buses, the data
buses, and the memory control signals) against the
programmed breakpoint register values that can be accessed
via the JTAG protocol [28]. The breakpoint registers include
the address registers, data value registers, control registers,
debug status registers, and mask registers. The address bus and
the data bus can be masked according to the address mask
registers and the data mask registers, respectively, to exclude a
specific address area or a specific data value [5].

When a breakpoint condition occurs, the internal breakpoint
enable signal (int_bkpt_en) is enabled. These signals are
connected with the SMC module to indicate whether the
breakpoint condition is satisfied or not (see Fig. 2). The
int_bkpt_en signal can be disabled by the control register.

2. Switch Mode Controller

In run-stop-style debugging, when the breakpoint event
occurs, the processor core enters into the special debug mode,
that is, the stop mode. This indicates that the processor core
must be halted immediately following the condition that raised
the event, so that the possible debugging point is not lost.
Therefore, the EDU block must be capable of managing this

Fig. 3. Required interface signals for mode-switching operation:
stop_mode_en, debug control, and status Info. signals.

SMC

Processor core

debug control

EDU

Comparator Memory access signals

status Info.

stop_mode_en

stop_mode_en

ext_bkpt_en int_bkpt_en

Fig. 4. Mode-switching operation of processor core at breakpoint
address (a2).

FE DC EX
DC EX

FE DC EX
FE DC EX

FE DC

FE

Address Instruction
a0
a1
a2
a3
a4
a5
a6

Breakpoint

Breakpoint

EX

DC

FE

Debug control
(pipeline flushing)

WB

WB

WB ME
ME

ME

ME

Stop_point
i0

i1

i0
i1
i2

i0
i1
i2
i3

i0
i1
i2
i3
i4

i1

i2

i3

i4

i5

i2

i3

i4

i5

i6

i0
i1
i2
i3
i4
i5
i6

mode-switch operation of the processor core. As shown in Fig.
3, the SMC module in the EDU block functions to handle this
mode-switching operation between the run mode and the stop
mode through several debug purpose interface signals (status
Info., debug control, and stop_mode_en). The SMC keeps
track of the breakpoint event through the int_bkpt_en signal
from the comparator module, and asserts the stop_mode_en
signal when the processor is in the appropriate stop condition.
The ext_bkpt_en input signal is used to force the processor
core into the stop mode so as to support concurrent debug
operations between embedded processor cores (this will be
discussed in section V.2).

For the program execution not to be affected in normal
running mode (the run mode), the processor core has to be in
an appropriate operational status before entering into the stop
mode [29]. Figure 4 illustrates an example of the mode-
switching operation at a breakpoint address (a2). The mode-
switching operation must be activated only after the previous
address instructions (i1) of the breakpoint address have been
completed and the subsequent instructions running on each
pipeline stage (i3, i4, i5, and i6) have been canceled.

The SMC can detect the completion time of the previous
instruction (stop_point) through a set of status Info. signals [28].
This completion time is different depending on the kind of
instruction, for example, multiple load/store or repeat
instructions. Moreover, for a conditional-branch-type
instruction, the mode-switching operation must be carried out

48 Hyeongbae Park et al. ETRI Journal, Volume 34, Number 1, February 2012

Fig. 5. State diagram of SMC module for handling mode-switch
operation.

STOP_
MODE

RUN_
MODE

WAIT

RECOG_
BKPT

ANALYZE_
CORE

debug_end (0)

debug_end (1)

status Info.

DEBUG_
CONTROL

int_bkpt_en (0)

stop_point (1)

stop_point (0)

int_bkpt_en (1)

only if the condition is false. Because processor cores usually
have some special performance-improving features that can
affect the mode-switching operation, the types of status Info.
signals can be different depending on the architectural features
of the target processor core. In addition, the SMC can cancel
the pipeline operations of the subsequent instructions by using
the debug control signal. To enable this SMC to handle these
debug operations, the processor core must support the debug
purpose interface signals and functions.

The operation of the SMC module can be illustrated by state
diagrams, as shown in Fig. 5. The SMC detects the breakpoint
event by the int_bkpt_en signal in the RUN_MODE state, and
recognizes the breakpoint condition (address breakpoint or data
value breakpoint) in the RECOG_BKPT state. The exact
mode-switching time can be detected through the status Info.
signals in the ANALYZE_CORE state, and the debug control
is carried out in the DEBUG_CONTROL state. When the
stop_point signal is enabled in the WAIT state, the processor
core enters into the stop mode while asserting the
stop_mode_en signals in the STOP_MODE state. When
debugging is completed (debug_end is enabled), the processor
core returns to the run mode (RUN_MODE state).

The stop_mode_en and ext_bkpt_en signals can be
interfaced with debug purpose signals of external hardware IPs,
such as interrupt request signals or debug request signals, to
support application-specific debug operations that can facilitate
the debugging of the target multicore processor.

3. Scan Chain

As described in previous subsections, the breakpoint
operation is performed by the comparator module and the
SMC module. The single-step debugging operation can be
executed by setting the breakpoint at the next address. The
register read/write and memory read/write debugging
operations are performed by using the IEEE 1149.1 boundary

Fig. 6. Utilization of boundary scan chain to inspect internal
status of processor core. It is used for inserting
instructions into IR and reading or writing register value
from/to LSU.

IR

LSU

Program
memory

.....

TDO
TDI

update_dr
capture_dr

Data
memory

Scan chains

stop_mode_en

EDU

Processor core

scan chains of the JTAG block. Figure 6 shows the utilization
of the scan chain to inspect the registers and memory. The scan
chain resides in parallel with the memory access bus of the
processor core. When the target processor core is in the stop
mode (stop_mode_en is enabled), the scan chain is connected
to the instruction register (IR) and to the load and store unit
(LSU) (The IR block is a register that is used to store an
instruction temporarily in the FETCH pipeline stage, and the
LSU block is a functional element that serves to manage all
memory read (load) and memory write (store) operations).

This feature allows a debug purpose instruction and data
value to be shifted into the scan chain in the Shift-DR state, and
loaded into the IR and the LSU in the Update-DR state,
through the test data input (TDI) port. While the processor core
is stopped, this inserted instruction and data value can be
executed by the controlled clock pulse of the clock controller (it
will be discussed in section V.1). Also, the execution results can
be captured into the scan chain from LSU in the Capture-DR
state, and shifted out in the Shift-DR state through the test data
output (TDO) port. This scheme resembles the operating
method of ARM’s Embedded-ICE [5], [29]. For example, the
debugging process involves the following three steps for
reading the R0 register value from the target processor core via
the scan chain.

Step 1. Insert the store register (STR) instruction into the
scan chain. After entering into the stop mode, the STR
instruction is inserted into the IR though the TDI port.

Step 2. Execute the STR instruction until the MEMORY
pipeline stage. The inserted STR instruction is then executed
by the controlled clock pulses from the clock controller. The
R0 register value is loaded into the LSU block at the
MEMORY pipeline stage.

Step 3. Read the R0 register value through the scan chain.

ETRI Journal, Volume 34, Number 1, February 2012 Hyeongbae Park et al. 49

Fig. 7. Extensions of processor core to interact with EDU block
to support built-in debug operations.

Processor core

Decoder
block

Pipeline
flushing

special_inst

hazard
SMC

int_bkpt_en ext_bkpt_en

Comparator

stop_mode_en

Scan chain

EDU

status
Info.

TAP signals

Mem.
access

debug
control

IR & LSU

. . .

. . .

The R0 value in the LSU block is then shifted out through the
TDO port.

4. Extension of Processor Core

Figure 7 shows the extension of the processor core to support
the debug purpose interface signals and functions to work with
the EDU block. To detect the mode-switching time, the
processor core can provide several status Info. signals that are
constituents of the control signals from the decoder block;
these are the decoding results of the previous instruction of the
breakpoint address (refer to section IV.2). In general, the
processor core has some functional blocks for bubbling the
pipeline, also known as a pipeline break, pipeline stall, or
pipeline flush, to prevent data, structural, and branch hazards
from occurring by inserting NOPs into the pipeline before the
next instruction (which would cause the hazard) is executed
[30]. The debug control signal that is used to cancel the
subsequent instructions of the breakpoint address is added to
the pipeline flush block. In addition, as shown in Fig. 7, the
boundary scan chains are added to the core’s program/data
memory access bus. Alternatively, if the processor core has its
own scan chain in the memory access bus, this can be used for
the EDU’s debugging operation.

These types of modification do not affect the given processor
core. As discussed above, because the debug purpose interface
signals and functions (status Info. and debug control) can be
implemented by minor extensions of the decoder block and the
pipeline flush block, the interfacing of the EDU block does not
require the design of additional functional blocks in the
processor core. Since general processor design typically
includes both types of functional blocks (decoder blocks and
pipeline flush blocks), this form of extension is possible for
most processor core models at RTL. Therefore, the EDU block
can be interfaced with different processor cores at RTL with
minor modifications that do not adversely affect the original

Fig. 8. Block diagram of MDSU that consists of clock controller
module and cross breakpoint manager module.

Clock
controller

Cross breakpoint
manager

TAP signals TAP signals

...

... ...

core0_clk ~ N ext_bkpt_en0 ~ N

ext_clks

stop_mode_en0 ~ N

Fig. 9. Block diagram of clock controller; core0_clk, core1_clk,
and coreN_clk represent internal clock inputs of N
embedded processor cores, respectively.

ext_clk0

core0_clk TCK MUX

core1_clk

coreN_clk ext_clkN

MUX

debug_clk_en0
stop_mode_en0

ext_clk1

debug_clk_en1
stop_mode_en1

.

.

.
.
.
.

processor core design.

V. Multicore Debug Support Unit

In this section, we describe the MDSU that works in
conjunction with the multiple EDU blocks of the embedded
processor cores (Fig. 1). The MDSU, consisting of the clock
controller module and the cross breakpoint manager module, is
designed to allow embedded processor cores to be debugged
concurrently through the stop_mode_en signals from each
EDU block, as shown in Fig. 8.

1. Clock Controller

Basically, for the run-stop-type debugging, the on-chip
debug infrastructure should support two functions, that is,
stopping the processor core’s execution at the breakpoint
address, and returning back to normal running mode. This run
control of the processor core has been traditionally
implemented by controlling its internal clock [5], [31]-[33].
Figure 9 shows the implementation of the clock controller

50 Hyeongbae Park et al. ETRI Journal, Volume 34, Number 1, February 2012

hardware for our multicore debug infrastructure. To perform
the debugging operations, the clock controller can control the
execution of each embedded processor core by gating the
external clock input.

As shown in Fig. 9, the clock controller allows the internal
clock of each processor core to be disabled independently
during the processor chip’s normal operation. If the core0
processor hits a breakpoint, the stop_mode_en0 signal is
enabled. This forces the internal clock input (core0_clk) to be
disabled by gating the external clock input (ext_clk0) through a
2×1 multiplexer, while the core0 processor enters the stop
mode. When the debug operation is completed, the
stop_mode_en0 signal again becomes disabled; the ext_clk0
signal passes directly to the core0_clk, and the core0 processor
returns back to the normal running state (the run mode).

Additionally, in the stop mode, the clock controller can
generate a number of controlled clock pulses while the internal
clock input is stopped by stop_mode_en signals. As shown in
Fig. 9, the controlled clock pulses for each processor core can
be issued by using the test access port (TAP) controller signals,
test clock (TCK), and several debug_clk_en signals
(debug_clk_en0, debug_clk_en1, etc.). One of debug_clk_en
signals is enabled when the TAP controller is in the Run
Test/Idle state, and a scan chain selection register, which is a
user-defined JTAG register, is configured to select the
processor core being debugged (this will be discussed in
section VI). The generated clock pulses are used to execute the
instructions inserted from the boundary scan chain to inspect
the internal status of the processor core in the stop mode, as
discussed in section IV.3.

2. Cross Breakpoint Manager

In a multicore architecture processor, the individual
embedded processor cores execute relevant multiple tasks in a
parallel manner, while interacting with each other using task
scheduling, synchronization, and communication via the
interconnect method. Therefore, if one processor core hits a
breakpoint, the other processor cores executing relevant tasks
may have possible errors resulting in undesired behaviors.
Therefore, all the embedded processor cores may need to be
debugged concurrently. To effectively debug such multicore-
specific operations, so-called cross breakpoints or cross
triggering mechanisms are needed [16], [17].

In our debug architecture, a cross breakpoint manager
(CBM) module is designed to support this concurrent
debugging operation. Figure 10 shows the CBM module’s
operational mechanism by using I/O signals. The CBM
module utilizes a number of the stop_mode_en signals
(stop_mode_en0 to stop_mode_enN) and ext_bkpt_en signals

Fig. 10. Block diagram of CBM that employs cross breakpoint
mechanism between embedded processor cores.

stop_mode_reg0[1] mask_reg0[1]

stop_mode_en1

...

stop_mode_enN

...
stop_mode_reg0[N] mask_reg0[N]

ext_bkpt_en0

ext_bkpt_en1

ext_bkpt_enN

...

(ext_bkpt_en0 to ext_bkpt_enN), which are connected to
multiple EDU blocks of the embedded processor cores (see Fig. 1).

As described in section IV.2, the ext_bkpt_en0 is used to force
the core0 processor into the stop mode. This ext_bkpt_en signals
are determined by the combination of the stop_mode_en signals
from other EDU blocks (stop_mode_en1 to stop_mode_enN)
and the internal configuration registers (stop mode value register,
stop mode mask register), as shown in Fig. 10. In addition, the
CBM module can be extended to support target-specific debug
requirements by connecting it to different hardware IP, for
example, debug purpose signals or interrupt request signals [16],
[17].

VI. Extended JTAG Structure

The entire on-chip debug infrastructure is controlled and
programmed through an IEEE 1149.1 JTAG. Although it was
originally developed for I/O testing, the IEEE 1149.1 JTAG has
become a default interface method for other on-chip test/debug
features, including embedded debug blocks commonly available
for processor cores [12], [34]. To provide specific debug/test
functions depending on the target application, the JTAG can be
modified and extended by supporting additional user-defined
JTAG instructions or adding special purpose registers and
functional blocks [5], [7], [35], [36].

We extended the JTAG function for our debug infrastructure.
Figure 11 shows the schematic overview of the extended JTAG
structure. It includes a number of boundary scan chains for
individual EDU blocks (residing in parallel with the memory
access bus), a TAP controller, several special purpose registers,
and additional hardware logic (four multiplexers, a de-
multiplexer, and a decoder). Further, to support the debugging
of a multicore processor, the TAP controller has been extended
with several user-defined JTAG instructions. This JTAG logic
has two extended features to facilitate debugging of a multicore
processor.

First, as shown in Fig. 11, the scan chains of the EDU blocks
can be accessed separately because they are not concatenated
into a single long serial chain; thus, the debugging speed can be

ETRI Journal, Volume 34, Number 1, February 2012 Hyeongbae Park et al. 51

Fig. 11. Block diagram of on-chip JTAG block that has extended features for multicore processor debugging; scan chains within JTAG
are interfaced with individual core’s memory access bus (refer to section IV.3).

TAP controller

JTAG
selection reg Decoder

TDI TCK TMS nTRST TDO SEL

TCK

TMS

TDI

TDO

Scan_chain
selection reg

Instruction reg

Bypass reg

Standard
JTAG

Extended
JTAG

Multicore processor embedding on-chip JTAG logic

Internal JTAG ports of
JTAG-based IPs that have
built debug functions.

nTR
ST

ID reg

Scan chain
(core0 EDU)

nTRST_0

nTRST_N

...

TCK_0

TCK_N

...

TMS_0

TMS_N

...

TDI_0

TDI_N

...

TDO_0

TDO_N

...

increased. These scan chains have their own numbers to
facilitate easy access to them. To select particular scan chains to
route to the TAP, the JTAG contains an additional register,
called the scan chain selection register, and supports a private
JTAG instruction, sel_scan_chain, with all required public
JTAG instructions [5], [10]. When the TAP controller is in the
Update-IR state, the sel_scan_chain instruction is loaded into
the JTAG instruction register. In the Shift-DR state, the scan
chain number is shifted into the scan chain selection register.
This extended feature allows the proposed MOCD architecture
to be accessed over a single JTAG connection.

Secondly, much hardware IPs has built-in debug capabilities
based on JTAG, such as ARM, MIPS, and PowerPC. If the
hardware IPs are integrated with the target multicore processor
embedding MOCD infrastructure, additional JTAG pins are
required to allow each of them to be debugged [35], [36].
However, we extended JTAG to allow multiple JTAG-based
IPs on a single chip to be accessed via a single JTAG
connection. The proposed JTAG structure includes additional
hardware (JTAG selection register, decoder, multiplexer, and
demultiplexers), and a JTAG port, SEL, and, it supports the
additional JTAG instruction, sel_jtag. Multiple internal JTAG
ports of hardware IPs can be connected with a single external
JTAG port by this extended JTAG functionality. First, the
JTAG selection register is configured to select the JTAG-based
IP which is to be accessed. The decoder determines several
outputs of the multiplexer (TDI, TMS, TCK, nTRST) and an
input of the demultiplexer (TDO) according to the JTAG
selection register. The SEL port remains “low” while MOCD
infrastructure is accessed. However, the SEL port must be

“high” when accessing the JTAG-based hardware IPs, after
configuring the JTAG selection register. Once the SEL port is
“high,” a set of internal JTAG ports (selected by the decoder
block according to the JTAG selection register) are directly
connected to the external JTAG ports. This approach is simple
yet powerful because it eliminates the need for an additional
JTAG pin through only a small extension of the TAP controller
while maintaining full IEEE 1149.1 compliance.

VII. Implementation Results

To verify the proposed MOCD architecture, we applied it to
a prototype multicore processor that is designed for multimedia
streaming applications. The target multicore processor
contained four identical 32-bit RISC-type processor cores
(core0 to core3) that had some architectural features similar to
MIPS family processors. The processor had three FIFOs for
communication between the processor cores and several
peripheral IPs.

Figure 12 illustrates the implemented multicore processor
incorporating the MOCD infrastructure. To embed the EDU
block, we modified the processor cores such that they have the
debug purpose functions and interface signals that serve to
control the mode-switching operation between the run and the
stop modes, and we inserted boundary scan chains to the
memory access signals. The EDU blocks are connected with
the exterior MDSU block and JTAG block. For debug control,
the external clock input (ext_clk) of the multicore processor is
connected with the clock controller module of the MDSU, and
the internal clock input of each embedded processor is supplied

52 Hyeongbae Park et al. ETRI Journal, Volume 34, Number 1, February 2012

Fig. 12. Verification environments on RTL simulation level using multicore processor embedding MOCD, four GDB source-level
debuggers, and GDBstub.

MDSU (clock controller, cross breakpoint manager)

Core0

EDU

Local
mem

Core1

EDU

Core2

EDU

Core3

EDU

Shared bus

Shared
mem Int. cont.

Audio cont

Video cont
etc IPs.

JTAG

Target multicore processor embedding MOCD

TCK

TMS
TDI

TDO
nTRST
SEL

GDB
stub

SW interface
module

Core0
GDB

Core1
GDB

Core2
GDB

Core3
GDB

PLI connections through socket

DMA

Local
mem

FI
FO

Local
mem

Local
mem

Source-level
debuggers

FI

FO

FI
FO

ext_clk

by this clock controller. This work did not significantly affect
the design of the multicore processor. Furthermore, as
discussed in section IV.4, the embedding of the EDU block did
not require large extensions of the processor cores, which could
have an adverse effect on their original design.

As shown in Fig. 12, the verification was performed on RTL
simulation level. We interfaced the multicore processor running
on the HDL simulator with four GDB source-level debuggers
that are configured for the target processors via the GDBstub
software interface module. We implemented GDBstub to
support the remote debugging capability of GDB. It
communicates with GDB using remote serial protocol (RSP)
and generates JTAG format signals to control the on-chip
JTAG block through a TCP/IP socket connection [37], [38]. To
enable the GDBstub module to approach the JTAG block
running on HDL simulator, we developed a set of user-defined

Table 1. Area overhead of MOCD infrastructure in commercial
90-nm CMOS library.

Area
(# of 2-input NANDs) Functional blocks
1 core 4 cores

Comparator 13,127 52,508
EDU

SMC 268 1,072

Clock controller 14 64
MDSU

CBM 0 553

TAP controller 2,323 2,323
JTAG

Scan chain 6,355 25,420

Total 22,087 81,940

program language interface (PLI) functions that allow JTAG
TAPs to be approached via a TCP/IP socket channel. The RTL
multicore processor model is linked to the external four GDBs
via the GDBstub interface module by employing these user-
defined PLI functions.

Table 1 shows the gate counts of the proposed MOCD
infrastructure in a commercial 90-nm CMOS library. The gate
count overhead is about 22,087. However, this gate count
increases with the number of processor cores because of the
embedding of more EDU blocks and scan chains in the target
multicore processor. In our prototype multicore processor that
contains four EDU blocks and four scan chains, the total gate
count overhead is about 81,940 gates. This hardware overhead
is considered to be acceptable in comparison with existing
multicore debug solutions that support similar debug
functionalities [11].

VIII. Conclusion

As multicore architecture processors become more complex
and sophisticated, the importance of debugging will continue to
increase because of the intrinsic lack of the internal chip’s
observability and controllability. In this study, we proposed a
flexible MOCD architecture that is designed to support the
processor-centric run-stop-type debugging functions, including
run, halt, single step, and breakpoint, together with concurrent
debug operations between embedded processor cores.

The MOCD architecture consists of three functional blocks,
that is, EDU, MDSU, and JTAG. We designed a core-debug-
supporting logic, EDU, that can be embedded into each
processor core of the multicore processor and make it possible
to debug them separately. These multiple EDU blocks are

ETRI Journal, Volume 34, Number 1, February 2012 Hyeongbae Park et al. 53

connected with the MDSU block to provide the synchronous
and concurrent debug functions. All of the debug control is
performed by a single TAP connection of the extended JTAG
block.

The MOCD architecture can be applied to different
multicore processors at RTL. Depending on the target
multicore processor, each block can be extended to fit it. We
defined the required extensions and modifications of the
multicore processor for the run-stop debug operations, such as
the connection method of clock signals and debug
request/acknowledge signals, and described how to embed the
three functional blocks into it. We applied the MOCD
infrastructure to a simple prototype multicore processor, and
we successfully verified its validation and scalability at RTL-
simulation level. The MOCD architecture can offer developers
a significant amount of flexibility in finding the optimum
processor-centric debug solutions for multicore processors.

References

[1] W. Wolf, A. Jerraya, and G. Martin, “Multiprocessor System-on-
Chip (MPSoC) Technology,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 27, no. 10, Oct. 2008, pp. 1701-
1713.

[2] T. Dorta et al., “Overview of FPGA-Based Multiprocessor
Systems,” Int. Conf. Reconfigurable Comput. FPGAs, 2009, pp.
273-278.

[3] G. Martin, “Overview of the MPSoC Design Challenge,” 43rd
ACM/IEEE Design Autom. Conf., 2006, pp. 274-279.

[4] A.B.T. Hopkins and K. McDonald-Maier, “Debug Support
Strategy for Systems-on-Chips with Multiple Processor Cores,”
IEEE Trans. Comput., vol. 55, no. 2, Feb. 2006, pp. 174-184,
doi:10.1109/TC.2006.22.

[5] ARM Ltd. Embedded-ICE Block Specification. Available:
http://www.arm.com

[6] MIPS Technologies Inc. EJTAG Trace Control Block
Specification. Available: http://www.mips.com

[7] JTAGPPC Controller. Available: http://www.xilinx.com
[8] L. Lian et al., “Design and Implementation of A Debugging

System for OpenRISC Processor,” 2nd ASID Conf., 2008, pp.
368-371.

[9] ARM Ltd. Embedded Trace Macrocell (ETM) Block
Specification. Available: http://www.arm.com

[10] PDtraceTM Interface Specification, MD00136, May 14, 2003.
http://www.mips.com

[11] B. Vermeulen, “Functional Debug Techniques for Embedded
Systems,” IEEE Design Test Comput., vol. 25, no. 3, 2008, pp.
208-215.

[12] H.F. Ko, A.B. Kinsman, and N. Nicolici, “Design-for-Debug
Architecture for Distributed Embedded Logic Analysis,” Very

Large Scale Integr. Syst., vol. 13, 2010, pp. 1-14.
[13] K. Goossens et al., “Transaction-Based Communication-Centric

Debug,” Proc. Int. Symp. Netw. On-Chip, May 2007.
[14] B. Vermeulen, K. Goossens, and S. Umrani, “Debugging

Distributed-Shared-Memory Communication at Multiple
Granularities in Networks on Chip,” Proc. Int. Symp. Netw. On-
Chip, 2008, pp. 3-12.

[15] B. Vermeulen and K. Goossens, “A Network-on-Chip Monitoring
Infrastructure for Communication-Centric Debug of Embedded
Multiprocessor SoCs,” Int. Symp. VLSI Design, Automation Test,
28-30 Apr. 2009, pp. 183-186.

[16] N. Stollon et al., “Multi-core Embedded Debug for Structured
ASIC Systems,” Proc. DesignCon, 2004.

[17] R. Leatherman and N. Stollon, “An Embedded Debugging
Architecture for SoCs,” IEEE Potentials, vol. 24, no. 1, 2005, pp.
12-16.

[18] ARM11MPCore Specification. Available: http://www.arm.com
[19] W. Orme, “Debug and Trace for Multicore SoCs,” Sept. 2008.

Available: http://www.arm.com
[20] B. Vermeulen et al., “Overview of Debug Standardization

Activities,” IEEE Design Test Comput., vol. 25, no. 3, May 2008,
pp. 258-267.

[21] H. Yi, S. Park, and S. Kundu, “On-Chip Support for NoC-based
SoC Debugging,” IEEE Trans. Circuits and Syst. Part I: Regular
Papers, vol. 57, no. 7, 2010, pp. 1608-1617.

[22] S. Tang and Q. Xu, “A Multi-core Debug Platform for NoC-
Based Systems,” Proc. Design, Autom. Test Europe Conf.
Exhibition, Apr. 2007, pp. 1-6.

[23] S. Tang and Q. Xu, “A Debug Probe for Concurrently Debugging
Multiple Embedded Cores and Inter-core Transactions in NoC-
Based Systems,” Conf. Asia South Pacific Design Autom., Seoul,
Rep. of Korea, 2008, pp. 416-421.

[24] L. Fiorin, G. Palermo, and C. Silvano., “MPSoCs Run-Time
Monitoring through Networks-on-Chip,” Proc. Conf. Design,
Automation Test Europe Conf. Exhibition, 2009, pp. 558-561.

[25] CoreSight On-Chip Trace and Debug Specification. Available:
http://www. arm.com

[26] B. Vermeulen and S. Bakker, ‘‘Debug Architecture for the En-II
System Chip,’’ Comput. Digit. Techn., IET, vol. 1, no. 6, Nov.
2007, pp. 678-684.

[27] IEEE Std. 1149.1a-1993, “Test Access Port and Boundary-Scan
Architecture,” IEEE, 1993.

[28] H. Park et al., “Design of On-Chip Debugging System Using
GNU Debugger,” IEEK, vol. 46, no. 1, 2009, pp. 24-38.

[29] I.-J. Huang et al., “A Retargetable Embedded In-circuit Emulation
Module for Microprocessors,” IEEE Design Test Comput., vol.
19, no. 4, July-Aug. 2002, pp. 28-38.

[30] D.A. Patterson and J.L. Hennessy, Comput. Organization Design,
4th ed., Morgan Kaufmann Publishers, 2009, p. 336.

[31] H. Hao and R. Avra, “Structured Design-for-Debug-the

54 Hyeongbae Park et al. ETRI Journal, Volume 34, Number 1, February 2012

SuperSPARCTMII Methodology and Implementation,” Proc.
Int. Test Conf., 1995, pp. 175-183.

[32] H. Hao and K. Bhabuthmal, “Clock Controller Design in
SuperSPARCTMII Microprocessor,” Proc. Int. Test Conf.
Comput. Design, 1995, pp. 124-129.

[33] G.J. van Rootselaar and B. Vermeulen, “Silicon Debug: Scan
Chains Alone Are Not Enough,” Int. Test Conf., 1999, p. 892.

[34] G.R. Alves and J.M.M. Ferreira, “From Design-for-Test to
Design-for-Debug-and-Test: Analysis of Requirements and
Limitations for 1149.1,” Proc. 17th IEEE VLSI Test Symp., Los
Alamitos, CA: IEEE CS Press, 1999, pp. 473-480.

[35] A. Hopkins and K. McDonald-Maier, ‘‘Debug Support for
Complex Systems On-Chip: A Review,’’ IEE Proc. Comput.
Digit. Tech., vol. 153, no. 4, July 2006, pp. 197-207.

[36] B. Vermeulen, T. Waayers, and S. Bakker, “IEEE 1149.1-
Compliant Access Architecture for Multiple Core Debug on
Digital System Chips,” Proc. Int. Test Conf., Oct. 2002, pp. 55-63.

[37] R. Stallman, R. Pesch, and S. Shebs, Debugging with GDB: The
GNU Source-Level Debugger, Free Software Foundation.

[38] Open On-Chip Debugger. Available: http://openocd.berlios.de/
web/

Hyeongbae Park received the BS in
telecommunication engineering from Dongseo
University and the MS in electrical engineering
from Pusan National University, Busan, Rep. of
Korea, in 2004 and 2006, respectively. He is
currently working toward the PhD in electronics
engineering at Pusan National University. His

research interests include application-specific processor design,
multicore architecture processor design for multimedia application, and
on-chip debug architecture.

Jing-Zhe Xu received the BS in electronic
communication engineering from Yanbian
University of Science and Technology, Yanji,
Jilin, China, and the MS in electronic
engineering from Pusan National University,
Busan, Rep. of Korea, in 2005 and 2008,
respectively. He is currently working toward the

PhD in electronics engineering at Pusan National University, Rep. of
Korea. His research interests include microprocessor design, multicore
platform implementation and on-chip debug architecture.

Kil Hyun Kim received the BS from the
Department of Control and Instrumentation
Engineering from Pukyong University, Busan,
Rep. of Korea, in 2010. His research interests
include design of high-performance processor
and on-chip debug architecture.

Ju Sung Park received the BS in electronics
engineering from Pusan National University,
Busan, Rep. of Korea, in 1976, the MS in
electrical engineering from KAIST, Seoul,
Korea, in 1978, and the PhD in electrical
engineering from University of Florida,
Gainsville, in 1989. From 1978 to 1991, he was

with ETRI, Daejeon, Rep. of Korea, where he worked as a principal
research engineer and as the Manager and Director of the IC Design
Group. While at ETRI, he designed several bipolar analog ICs and was
in charge of developing VCR ICs, CMOS 8-bit microprocessors, and
telecommunication chips. In 1991, he joined the Electronics
Department, Pusan National University, where he is now a professor of
electronics engineering. His current research interests are
microprocessor and DSP core design, platform design and application,
and multimedia algorithm implementation by hardware and software
co-design.

