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Because of the intrinsic lack of internal-system 
observability and controllability in highly integrated 
multicore processors, very restricted access is allowed for 
the debugging of erroneous chip behavior. Therefore, the 
building of an efficient debug function is an important 
consideration in the design of multicore processors. In this 
paper, we propose a flexible on-chip debug architecture 
that embeds a special logic supporting the debug 
functionality in the multicore processor. It is designed to 
support run-stop-type debug functions that can halt and 
control the execution of the multicore processor at 
breakpoint events and inspect the possible causes of any 
errors. The debug architecture consists of the following 
three functional components: the core debug support 
block, the multicore debug support block, and the debug 
interface and control block. By embedding this debug 
infrastructure, the embedded processor cores within the 
multicore processor can be debugged simultaneously as 
well as independently. The debug control is performed by 
employing a JTAG-based scanning operation. We apply 
this on-chip debug architecture to build a debugger for a 
prototype multicore processor and demonstrate the 
validity and scalability of our approach. 
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I. Introduction 

In recent years, the multicore processor containing two or 
more processor cores on a single chip has been widely used in 
embedded systems that require high processing power, such as 
networking, communication, signal processing, and 
multimedia systems. The design of a multicore processor 
involves many difficult problems that need to be solved, such 
as interconnection, cache coherency, scheduling, 
synchronization, and programming model. [1]-[3]. Apart from 
these complexities, the multicore architecture of the processor 
presents new challenges in debugging. 

Because of the dramatic increase in processor performance 
and the intrinsic lack of internal-system observability and 
controllability in highly integrated multicore processors, 
conventional debugging approaches that implement debug 
functions from outside the processor chip can no longer 
provide efficient debugging capabilities, for example, in-circuit 
emulators or ROM monitors [4]. To address these difficulties, 
most multicore processors employ an on-chip debug method, 
also known as design-for-debug (DfD), with a special 
hardware debug function embedded in the processor chip. As 
multicore processors can have diverse structures and 
architectures with a wide range of processor cores, the 
implementation of effective debug functions tailored to the 
target multicore processor is certainly one of the most 
important design challenges. There are several types of on-chip 
debug approaches that focus on different processor operations 
and support different debug functionalities. 

On-chip debug functionalities can be classified into two 
types based on the supported debugging method. The first type 
features a run-stop (intrusive) scheme that uses execution 
control to start a processor and then stops it on a breakpoint 
placed at a point of interest to allow inspection of the 
processor’s state, for example, ARM’s Embedded-ICE and 
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MIPS’s Extended JTAG (EJTAG) [5]-[8]. The second type 
uses a real-time trace (non-intrusive) scheme that stores the 
debug information (such as program flow or memory access 
address/value) into the internal or the external memory without 
halting the processor execution, for example, ARM’s 
Embedded Trace Macrocell (ETM) and MIPS’s Program and 
Data Trace (PDtrace) [9], [10]. This method complements the 
run-stop debugging by providing additional information about 
the timing behavior of the processor operation [11]. 

Although, the real-time trace scheme is a more efficient 
debugging solution than the run-stop scheme, with respect to 
supported debugging capability, it may not be the appropriate 
debug solution in some cases due to complexity and hardware 
overheads. It requires on-chip or off-chip memory to store the 
traced debug data and a set of trace ports to transfer debug data 
out of the chip at high speeds, and it also needs an efficient 
compression/decompression hardware to reduce the amount of 
debug data [6], [8], [12]. 

Different from the above conventional processor-centric 
debug solutions focusing on the processor’s computational 
operations and its interaction with main memory, in recent 
years, new research has introduced communication-centric 
debug solutions for network-on-chip (NoC)-based multicore 
processors to make the interactions between the intellectual 
property (IP) blocks via the communication architecture 
observable and controllable [13]-[15]. 

Among the diverse debug approaches, the processor-centric 
debug solution employing the run-stop scheme gives the 
developer more power to observe the functional behavior of 
the processor core at the exact possible erroneous point, in a 
controlled manner. This debug method allows each embedded 
processor core of the multicore processor to be controlled and 
accessed independently. In addition, it must be able to provide 
special debug capabilities to handle many of the debugging 
issues that are specific to a multicore architecture processor, 
such as interoperability, communication, and synchronization 
between the embedded processor cores. 

In this study, we propose on-chip debug architecture for the 
multicore processor that supports processor-centric debug 
operations in a run-stop fashion. It is capable of controlling the 
target multicore processor to perform debug operations. Further, 
it also capable of observing the multicore processor’s internal 
status to inspect the root cause of erroneous behavior. Our main 
objective is to develop a flexible and practical processor-centric 
run-stop debug solution that can be readily integrated into 
multicore processors at the register-transfer level (RTL) with 
minimum modifications, rather than defining an extensive 
standard for a wide range of debug applications. 

This paper is organized as follows. In section II, we review 
the existing debug approaches for multicore processors. In 

section III, we present a brief overview of the proposed on-chip 
debug architecture for multicore processors. The three 
functional blocks of the debug architecture are described in 
detail in sections IV, V, and VI. The implementation results are 
explained in section VII, and the concluding remarks are made 
in section VIII. 

II. Related Work 

Most of the recent multicore processors employ an on-chip 
debug method that adds special debug-support IP blocks into 
the design. Researchers have proposed several on-chip debug 
methods for a multicore processor. First Silicon Ltd. presented 
an integrated debug platform including a software debugger 
called multicore embedded debug that contained an on-chip 
instrument block as the core debug supporting module, 
HyperDebug block for debugging intercore communication, 
and HyperJTAG [16], [17]. To address a diverse range of 
debug requirements, it introduced system-level debug solutions 
that can monitor and trace embedded cores during normal 
operation. ARM proposed debug methodologies called 
CoreSight for ARM-based and AMBA-based multicore 
processor [5], [6], [18], [19]. As the CoreSignt is designed for 
an ARM-based system-on-chip (SoC), it cannot provide an 
appropriate debug solution when the target multicore processor 
does not employ ARM cores and an AMBA system bus or 
when embedded processor cores do not have built-in debug 
functions. 

In recent years, debug standardization research has been 
widely carried out in an effort to bring together IP core 
providers, semiconductor manufacturers, and vendors of debug 
tools in five organizations: the Nexus 5001, Mobile Industry 
Processor Interface (MIPI) Test and Debug, IEEE P1149.7, 
IEEE P1687, and Open Core Protocol International Partnership 
(OCP-IP) Debug working groups [20]. As the groups’ joint 
goal is to standardize the debug interfaces between different IP 
cores on a chip as well as between different chips, and the 
external debug equipment and tools, they may not offer 
practical debug solutions for the multicore architecture 
processor. 

There have been several studies on on-chip debug 
implementations based on the following standards for 
multicore processors: Nexus 5001, IEEE std. 1500, and OCP-
IP [21]-[24]. To make the embedded processor cores 
compatible with these standards, a designer must develop an 
interface block, a so-called wrapper, to wrap around the 
embedded processor cores to connect them using the common 
interface protocol. This wrapper circuit must include a core 
debug supporting logic to allow the embedded cores to be 
controlled and debugged according to the required debug 
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operations. This standard-based debug implementation scheme 
can be useful in developing the debug solutions of certain 
multicore processors, which employ a complex intercore 
communication method such as NoC, because it can facilitate 
the connection of debug units between the embedded cores. 
However, it is possible that this approach may be more difficult 
and complex when the multicore processor does not adopt the 
standard-based interface method. 

As mentioned above, depending on the implementation 
method and the supported debug functionality, there are 
various kinds of debug solutions for multicore processors. In 
this study, we focused on designing a flexible and scalable on-
chip debug infrastructure that can provide the processor-centric 
run-stop debug functionalities on multicore architecture 
processors. We also discuss its application method. 

III. Multicore On-Chip Debug Architecture: Overview  

In this section, we present an overview of the proposed 
processor-centric debug architecture, called multicore on-chip 
debug (MOCD). The details follow in the later sections. Figure 
1 shows the block diagram of the debug architecture and the 
relationship between the functional units on the multicore 
processor with respect to the important signals. 

The debug architecture consists of three functional units: the 
core debug support block, the multicore debug support block, 
and the debug interface and control block. The core debug 
support block, called embedded debug unit (EDU), is 
embedded into each processor core within the target multicore 
processor to support run-stop debug functionalities. By 
embedding this EDU block, each processor core can be 
accessed and debugged independently by using basic debug 
functions, common to most processors and IEEE 1149.1 
JTAG-based debug implementations, including breakpoints 
and watchpoints, single stepping, read/write register, and 
read/write memory. Multiple EDU blocks can monitor each 
embedded processor core’s operation separately. When one of 
the processor cores raises a breakpoint event, other processors 
that are executing relevant tasks must be stopped immediately 
following the condition that raised the event so that the possible 
debugging point is not lost [25], [26]. For this concurrent debug 
operation, the EDU blocks work in conjunction with the 
multicore debug support block, called the multicore debug 
support unit (MDSU) that includes the clock controller module 
and cross breakpoint manager module. The MDSU block can 
control the execution of all the embedded processor cores and 
other hardware IP according to several configuration registers. 
As shown in Fig. 1, JTAG is used for the debug interface and 
control [27]. This JTAG block has extended features to 
facilitate debugging of a multicore processor, which allows all 

 

Fig. 1. Overall organization of MOCD architecture on a multicore
processor that is composed of three functional blocks:
EDU, MDSU, and JTAG. 
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embedded processor cores to be accessed only through a single 
JTAG connection. 

Since the proposed debug architecture supports run-stop-
type debugging operations, the processor execution is stopped 
at a point of interest to inspect its internal status. Therefore, 
each processor core has two modes of operation, namely, the 
run mode and the stop mode. The run mode represents the 
processor’s normal operation. Once a breakpoint condition 
occurs, the processor enters into the stop mode, indicating that 
the processor core is halted for debugging. When the debug 
operations are complete, the operation mode is switched back 
to the run mode. For this run-stop operation, as shown in Fig. 1, 
the internal clock input of each processor core is supplied from 
the clock controller of the MDSU block and not directly 
connected to the external clock (ext_clk). This approach 
enables the internal clock of each processor core to be 
controlled for performing the debug operations. Due to this 
run-stop debug operation, the processor cores need to be 
modified and extended to manage this mode-switching 
operation at the breakpoint address. 

In the following sections, we will describe the function and 
relationship of the three functional units (EDU, MDSU, and 
JTAG) and provide an overview of how to integrate these with 
a given multicore processor. 

IV. Embedded Debug Unit 

The EDU block is a core-debug-supporting hardware block 
that can be embedded into each processor core to support 
debug capabilities on a multicore processor. Figure 2 shows the 
structure of the EDU block and the connection signals that are 
required to interface it with the processor core. 

The EDU block can be divided into the following three 
functional modules: comparator, switch mode controller 
(SMC), and IEEE 1149.1 boundary scan chain. The 
comparator module is designed to detect the breakpoint 
condition and the scan chain module is used to inspect the  
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Fig. 2. EDU block is a core debug supporting hardware block that
can be embedded into the processor core. 
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processor core’s internal status. The SMC module serves to 
control and interact with the processor core through several 
interface signals, to handle the mode-switching operation 
properly (between the stop mode and the run mode).  

Because of this mode-switching operation, the processor 
core needs to have appropriate functions and interface signals 
that enable the EDU block to control the core’s execution for 
performing debug operations. In the following three 
subsections (IV.1, IV.2, and IV.3), we describe the functions of 
the three modules. In subsection IV.4, we discuss how to 
interface them with a processor core. 

1. Comparator 

The comparator module involves a number of registers and 
one comparator element. It can monitor and detect the 
breakpoint condition, by comparing the memory access signals 
of the processor core (including the address buses, the data 
buses, and the memory control signals) against the 
programmed breakpoint register values that can be accessed 
via the JTAG protocol [28]. The breakpoint registers include 
the address registers, data value registers, control registers, 
debug status registers, and mask registers. The address bus and 
the data bus can be masked according to the address mask 
registers and the data mask registers, respectively, to exclude a 
specific address area or a specific data value [5]. 

When a breakpoint condition occurs, the internal breakpoint 
enable signal (int_bkpt_en) is enabled. These signals are 
connected with the SMC module to indicate whether the 
breakpoint condition is satisfied or not (see Fig. 2). The 
int_bkpt_en signal can be disabled by the control register. 

2. Switch Mode Controller 

In run-stop-style debugging, when the breakpoint event 
occurs, the processor core enters into the special debug mode, 
that is, the stop mode. This indicates that the processor core 
must be halted immediately following the condition that raised 
the event, so that the possible debugging point is not lost. 
Therefore, the EDU block must be capable of managing this  

 

Fig. 3. Required interface signals for mode-switching operation:
stop_mode_en, debug control, and status Info. signals. 
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Fig. 4. Mode-switching operation of processor core at breakpoint
address (a2). 
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mode-switch operation of the processor core. As shown in Fig. 
3, the SMC module in the EDU block functions to handle this 
mode-switching operation between the run mode and the stop 
mode through several debug purpose interface signals (status 
Info., debug control, and stop_mode_en). The SMC keeps 
track of the breakpoint event through the int_bkpt_en signal 
from the comparator module, and asserts the stop_mode_en 
signal when the processor is in the appropriate stop condition. 
The ext_bkpt_en input signal is used to force the processor 
core into the stop mode so as to support concurrent debug 
operations between embedded processor cores (this will be 
discussed in section V.2). 

For the program execution not to be affected in normal 
running mode (the run mode), the processor core has to be in 
an appropriate operational status before entering into the stop 
mode [29]. Figure 4 illustrates an example of the mode-
switching operation at a breakpoint address (a2). The mode-
switching operation must be activated only after the previous 
address instructions (i1) of the breakpoint address have been 
completed and the subsequent instructions running on each 
pipeline stage (i3, i4, i5, and i6) have been canceled. 

The SMC can detect the completion time of the previous 
instruction (stop_point) through a set of status Info. signals [28]. 
This completion time is different depending on the kind of 
instruction, for example, multiple load/store or repeat 
instructions. Moreover, for a conditional-branch-type 
instruction, the mode-switching operation must be carried out  
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Fig. 5. State diagram of SMC module for handling mode-switch
operation. 
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only if the condition is false. Because processor cores usually 
have some special performance-improving features that can 
affect the mode-switching operation, the types of status Info. 
signals can be different depending on the architectural features 
of the target processor core. In addition, the SMC can cancel 
the pipeline operations of the subsequent instructions by using 
the debug control signal. To enable this SMC to handle these 
debug operations, the processor core must support the debug 
purpose interface signals and functions. 

The operation of the SMC module can be illustrated by state 
diagrams, as shown in Fig. 5. The SMC detects the breakpoint 
event by the int_bkpt_en signal in the RUN_MODE state, and 
recognizes the breakpoint condition (address breakpoint or data 
value breakpoint) in the RECOG_BKPT state. The exact 
mode-switching time can be detected through the status Info. 
signals in the ANALYZE_CORE state, and the debug control 
is carried out in the DEBUG_CONTROL state. When the 
stop_point signal is enabled in the WAIT state, the processor 
core enters into the stop mode while asserting the 
stop_mode_en signals in the STOP_MODE state. When 
debugging is completed (debug_end is enabled), the processor 
core returns to the run mode (RUN_MODE state). 

The stop_mode_en and ext_bkpt_en signals can be 
interfaced with debug purpose signals of external hardware IPs, 
such as interrupt request signals or debug request signals, to 
support application-specific debug operations that can facilitate 
the debugging of the target multicore processor. 

3. Scan Chain 

As described in previous subsections, the breakpoint 
operation is performed by the comparator module and the 
SMC module. The single-step debugging operation can be 
executed by setting the breakpoint at the next address. The 
register read/write and memory read/write debugging 
operations are performed by using the IEEE 1149.1 boundary  

 

Fig. 6. Utilization of boundary scan chain to inspect internal
status of processor core. It is used for inserting
instructions into IR and reading or writing register value
from/to LSU. 
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scan chains of the JTAG block. Figure 6 shows the utilization 
of the scan chain to inspect the registers and memory. The scan 
chain resides in parallel with the memory access bus of the 
processor core. When the target processor core is in the stop 
mode (stop_mode_en is enabled), the scan chain is connected 
to the instruction register (IR) and to the load and store unit 
(LSU) (The IR block is a register that is used to store an 
instruction temporarily in the FETCH pipeline stage, and the 
LSU block is a functional element that serves to manage all 
memory read (load) and memory write (store) operations). 

This feature allows a debug purpose instruction and data 
value to be shifted into the scan chain in the Shift-DR state, and 
loaded into the IR and the LSU in the Update-DR state, 
through the test data input (TDI) port. While the processor core 
is stopped, this inserted instruction and data value can be 
executed by the controlled clock pulse of the clock controller (it 
will be discussed in section V.1). Also, the execution results can 
be captured into the scan chain from LSU in the Capture-DR 
state, and shifted out in the Shift-DR state through the test data 
output (TDO) port. This scheme resembles the operating 
method of ARM’s Embedded-ICE [5], [29]. For example, the 
debugging process involves the following three steps for 
reading the R0 register value from the target processor core via 
the scan chain. 

Step 1. Insert the store register (STR) instruction into the 
scan chain. After entering into the stop mode, the STR 
instruction is inserted into the IR though the TDI port.  

Step 2. Execute the STR instruction until the MEMORY 
pipeline stage. The inserted STR instruction is then executed 
by the controlled clock pulses from the clock controller. The 
R0 register value is loaded into the LSU block at the 
MEMORY pipeline stage. 

Step 3. Read the R0 register value through the scan chain.  
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Fig. 7. Extensions of processor core to interact with EDU block
to support built-in debug operations. 
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The R0 value in the LSU block is then shifted out through the 
TDO port.  

4. Extension of Processor Core 

Figure 7 shows the extension of the processor core to support 
the debug purpose interface signals and functions to work with 
the EDU block. To detect the mode-switching time, the 
processor core can provide several status Info. signals that are 
constituents of the control signals from the decoder block; 
these are the decoding results of the previous instruction of the 
breakpoint address (refer to section IV.2). In general, the 
processor core has some functional blocks for bubbling the 
pipeline, also known as a pipeline break, pipeline stall, or 
pipeline flush, to prevent data, structural, and branch hazards 
from occurring by inserting NOPs into the pipeline before the 
next instruction (which would cause the hazard) is executed 
[30]. The debug control signal that is used to cancel the 
subsequent instructions of the breakpoint address is added to 
the pipeline flush block. In addition, as shown in Fig. 7, the 
boundary scan chains are added to the core’s program/data 
memory access bus. Alternatively, if the processor core has its 
own scan chain in the memory access bus, this can be used for 
the EDU’s debugging operation. 

These types of modification do not affect the given processor 
core. As discussed above, because the debug purpose interface 
signals and functions (status Info. and debug control) can be 
implemented by minor extensions of the decoder block and the 
pipeline flush block, the interfacing of the EDU block does not 
require the design of additional functional blocks in the 
processor core. Since general processor design typically 
includes both types of functional blocks (decoder blocks and 
pipeline flush blocks), this form of extension is possible for 
most processor core models at RTL. Therefore, the EDU block 
can be interfaced with different processor cores at RTL with 
minor modifications that do not adversely affect the original  

 

Fig. 8. Block diagram of MDSU that consists of clock controller
module and cross breakpoint manager module. 
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Fig. 9. Block diagram of clock controller; core0_clk, core1_clk,
and coreN_clk represent internal clock inputs of N
embedded processor cores, respectively. 
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processor core design. 

V. Multicore Debug Support Unit 

In this section, we describe the MDSU that works in 
conjunction with the multiple EDU blocks of the embedded 
processor cores (Fig. 1). The MDSU, consisting of the clock 
controller module and the cross breakpoint manager module, is 
designed to allow embedded processor cores to be debugged 
concurrently through the stop_mode_en signals from each 
EDU block, as shown in Fig. 8. 

1. Clock Controller 

Basically, for the run-stop-type debugging, the on-chip 
debug infrastructure should support two functions, that is, 
stopping the processor core’s execution at the breakpoint 
address, and returning back to normal running mode. This run 
control of the processor core has been traditionally 
implemented by controlling its internal clock [5], [31]-[33]. 
Figure 9 shows the implementation of the clock controller 
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hardware for our multicore debug infrastructure. To perform 
the debugging operations, the clock controller can control the 
execution of each embedded processor core by gating the 
external clock input. 

As shown in Fig. 9, the clock controller allows the internal 
clock of each processor core to be disabled independently 
during the processor chip’s normal operation. If the core0 
processor hits a breakpoint, the stop_mode_en0 signal is 
enabled. This forces the internal clock input (core0_clk) to be 
disabled by gating the external clock input (ext_clk0) through a 
2×1 multiplexer, while the core0 processor enters the stop 
mode. When the debug operation is completed, the 
stop_mode_en0 signal again becomes disabled; the ext_clk0 
signal passes directly to the core0_clk, and the core0 processor 
returns back to the normal running state (the run mode). 

Additionally, in the stop mode, the clock controller can 
generate a number of controlled clock pulses while the internal 
clock input is stopped by stop_mode_en signals. As shown in 
Fig. 9, the controlled clock pulses for each processor core can 
be issued by using the test access port (TAP) controller signals, 
test clock (TCK), and several debug_clk_en signals 
(debug_clk_en0, debug_clk_en1, etc.). One of debug_clk_en 
signals is enabled when the TAP controller is in the Run 
Test/Idle state, and a scan chain selection register, which is a 
user-defined JTAG register, is configured to select the 
processor core being debugged (this will be discussed in 
section VI). The generated clock pulses are used to execute the 
instructions inserted from the boundary scan chain to inspect 
the internal status of the processor core in the stop mode, as 
discussed in section IV.3. 

2. Cross Breakpoint Manager 

In a multicore architecture processor, the individual 
embedded processor cores execute relevant multiple tasks in a 
parallel manner, while interacting with each other using task 
scheduling, synchronization, and communication via the 
interconnect method. Therefore, if one processor core hits a 
breakpoint, the other processor cores executing relevant tasks 
may have possible errors resulting in undesired behaviors. 
Therefore, all the embedded processor cores may need to be 
debugged concurrently. To effectively debug such multicore-
specific operations, so-called cross breakpoints or cross 
triggering mechanisms are needed [16], [17].  

In our debug architecture, a cross breakpoint manager 
(CBM) module is designed to support this concurrent 
debugging operation. Figure 10 shows the CBM module’s 
operational mechanism by using I/O signals. The CBM 
module utilizes a number of the stop_mode_en signals 
(stop_mode_en0 to stop_mode_enN) and ext_bkpt_en signals  

 

Fig. 10. Block diagram of CBM that employs cross breakpoint
mechanism between embedded processor cores. 
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(ext_bkpt_en0 to ext_bkpt_enN), which are connected to 
multiple EDU blocks of the embedded processor cores (see Fig. 1). 

As described in section IV.2, the ext_bkpt_en0 is used to force 
the core0 processor into the stop mode. This ext_bkpt_en signals 
are determined by the combination of the stop_mode_en signals 
from other EDU blocks (stop_mode_en1 to stop_mode_enN) 
and the internal configuration registers (stop mode value register, 
stop mode mask register), as shown in Fig. 10. In addition, the 
CBM module can be extended to support target-specific debug 
requirements by connecting it to different hardware IP, for 
example, debug purpose signals or interrupt request signals [16], 
[17]. 

VI. Extended JTAG Structure 

The entire on-chip debug infrastructure is controlled and 
programmed through an IEEE 1149.1 JTAG. Although it was 
originally developed for I/O testing, the IEEE 1149.1 JTAG has 
become a default interface method for other on-chip test/debug 
features, including embedded debug blocks commonly available 
for processor cores [12], [34]. To provide specific debug/test 
functions depending on the target application, the JTAG can be 
modified and extended by supporting additional user-defined 
JTAG instructions or adding special purpose registers and 
functional blocks [5], [7], [35], [36]. 

We extended the JTAG function for our debug infrastructure. 
Figure 11 shows the schematic overview of the extended JTAG 
structure. It includes a number of boundary scan chains for 
individual EDU blocks (residing in parallel with the memory 
access bus), a TAP controller, several special purpose registers, 
and additional hardware logic (four multiplexers, a de-
multiplexer, and a decoder). Further, to support the debugging 
of a multicore processor, the TAP controller has been extended 
with several user-defined JTAG instructions. This JTAG logic 
has two extended features to facilitate debugging of a multicore 
processor. 

First, as shown in Fig. 11, the scan chains of the EDU blocks 
can be accessed separately because they are not concatenated 
into a single long serial chain; thus, the debugging speed can be 
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Fig. 11. Block diagram of on-chip JTAG block that has extended features for multicore processor debugging; scan chains within JTAG
are interfaced with individual core’s memory access bus (refer to section IV.3). 
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increased. These scan chains have their own numbers to 
facilitate easy access to them. To select particular scan chains to 
route to the TAP, the JTAG contains an additional register, 
called the scan chain selection register, and supports a private 
JTAG instruction, sel_scan_chain, with all required public 
JTAG instructions [5], [10]. When the TAP controller is in the 
Update-IR state, the sel_scan_chain instruction is loaded into 
the JTAG instruction register. In the Shift-DR state, the scan 
chain number is shifted into the scan chain selection register. 
This extended feature allows the proposed MOCD architecture 
to be accessed over a single JTAG connection. 

Secondly, much hardware IPs has built-in debug capabilities 
based on JTAG, such as ARM, MIPS, and PowerPC. If the 
hardware IPs are integrated with the target multicore processor 
embedding MOCD infrastructure, additional JTAG pins are 
required to allow each of them to be debugged [35], [36]. 
However, we extended JTAG to allow multiple JTAG-based 
IPs on a single chip to be accessed via a single JTAG 
connection. The proposed JTAG structure includes additional 
hardware (JTAG selection register, decoder, multiplexer, and 
demultiplexers), and a JTAG port, SEL, and, it supports the 
additional JTAG instruction, sel_jtag. Multiple internal JTAG 
ports of hardware IPs can be connected with a single external 
JTAG port by this extended JTAG functionality. First, the 
JTAG selection register is configured to select the JTAG-based 
IP which is to be accessed. The decoder determines several 
outputs of the multiplexer (TDI, TMS, TCK, nTRST) and an 
input of the demultiplexer (TDO) according to the JTAG 
selection register. The SEL port remains “low” while MOCD 
infrastructure is accessed. However, the SEL port must be 

“high” when accessing the JTAG-based hardware IPs, after 
configuring the JTAG selection register. Once the SEL port is  
“high,” a set of internal JTAG ports (selected by the decoder 
block according to the JTAG selection register) are directly 
connected to the external JTAG ports. This approach is simple 
yet powerful because it eliminates the need for an additional 
JTAG pin through only a small extension of the TAP controller 
while maintaining full IEEE 1149.1 compliance.  

VII. Implementation Results 

To verify the proposed MOCD architecture, we applied it to 
a prototype multicore processor that is designed for multimedia 
streaming applications. The target multicore processor 
contained four identical 32-bit RISC-type processor cores 
(core0 to core3) that had some architectural features similar to 
MIPS family processors. The processor had three FIFOs for 
communication between the processor cores and several 
peripheral IPs. 

Figure 12 illustrates the implemented multicore processor 
incorporating the MOCD infrastructure. To embed the EDU 
block, we modified the processor cores such that they have the 
debug purpose functions and interface signals that serve to 
control the mode-switching operation between the run and the 
stop modes, and we inserted boundary scan chains to the 
memory access signals. The EDU blocks are connected with 
the exterior MDSU block and JTAG block. For debug control, 
the external clock input (ext_clk) of the multicore processor is 
connected with the clock controller module of the MDSU, and 
the internal clock input of each embedded processor is supplied 
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Fig. 12. Verification environments on RTL simulation level using multicore processor embedding MOCD, four GDB source-level
debuggers, and GDBstub. 
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by this clock controller. This work did not significantly affect 
the design of the multicore processor. Furthermore, as 
discussed in section IV.4, the embedding of the EDU block did 
not require large extensions of the processor cores, which could 
have an adverse effect on their original design. 

As shown in Fig. 12, the verification was performed on RTL 
simulation level. We interfaced the multicore processor running 
on the HDL simulator with four GDB source-level debuggers 
that are configured for the target processors via the GDBstub 
software interface module. We implemented GDBstub to 
support the remote debugging capability of GDB. It 
communicates with GDB using remote serial protocol (RSP) 
and generates JTAG format signals to control the on-chip 
JTAG block through a TCP/IP socket connection [37], [38]. To 
enable the GDBstub module to approach the JTAG block 
running on HDL simulator, we developed a set of user-defined 
 

Table 1. Area overhead of MOCD infrastructure in commercial
90-nm CMOS library. 

Area 
(# of 2-input NANDs) Functional blocks 
1 core 4 cores 

Comparator 13,127 52,508 
EDU 

SMC 268 1,072 

Clock controller 14 64 
MDSU 

CBM 0 553 

TAP controller 2,323 2,323 
JTAG 

Scan chain 6,355 25,420 

Total 22,087 81,940 

 

program language interface (PLI) functions that allow JTAG 
TAPs to be approached via a TCP/IP socket channel. The RTL 
multicore processor model is linked to the external four GDBs 
via the GDBstub interface module by employing these user-
defined PLI functions. 

Table 1 shows the gate counts of the proposed MOCD 
infrastructure in a commercial 90-nm CMOS library. The gate 
count overhead is about 22,087. However, this gate count 
increases with the number of processor cores because of the 
embedding of more EDU blocks and scan chains in the target 
multicore processor. In our prototype multicore processor that 
contains four EDU blocks and four scan chains, the total gate 
count overhead is about 81,940 gates. This hardware overhead 
is considered to be acceptable in comparison with existing 
multicore debug solutions that support similar debug 
functionalities [11]. 

VIII. Conclusion 

As multicore architecture processors become more complex 
and sophisticated, the importance of debugging will continue to 
increase because of the intrinsic lack of the internal chip’s 
observability and controllability. In this study, we proposed a 
flexible MOCD architecture that is designed to support the 
processor-centric run-stop-type debugging functions, including 
run, halt, single step, and breakpoint, together with concurrent 
debug operations between embedded processor cores. 

The MOCD architecture consists of three functional blocks, 
that is, EDU, MDSU, and JTAG. We designed a core-debug-
supporting logic, EDU, that can be embedded into each 
processor core of the multicore processor and make it possible 
to debug them separately. These multiple EDU blocks are 
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connected with the MDSU block to provide the synchronous 
and concurrent debug functions. All of the debug control is 
performed by a single TAP connection of the extended JTAG 
block. 

The MOCD architecture can be applied to different 
multicore processors at RTL. Depending on the target 
multicore processor, each block can be extended to fit it. We 
defined the required extensions and modifications of the 
multicore processor for the run-stop debug operations, such as 
the connection method of clock signals and debug 
request/acknowledge signals, and described how to embed the 
three functional blocks into it. We applied the MOCD 
infrastructure to a simple prototype multicore processor, and 
we successfully verified its validation and scalability at RTL-
simulation level. The MOCD architecture can offer developers 
a significant amount of flexibility in finding the optimum 
processor-centric debug solutions for multicore processors. 
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