• Title/Summary/Keyword: Chip Antenna

Search Result 193, Processing Time 0.027 seconds

Battery-free slotted patch antenna sensor for wireless strain and crack monitoring

  • Yi, Xiaohua;Cho, Chunhee;Wang, Yang;Tentzeris, Manos M.
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1217-1231
    • /
    • 2016
  • In this research, a slotted patch antenna sensor is designed for wireless strain and crack sensing. An off-the-shelf RFID (radiofrequency identification) chip is adopted in the antenna sensor design for signal modulation. The operation power of the RFID chip is captured from wireless reader interrogation signal, so the sensor operation is completely battery-free (passive) and wireless. For strain and crack sensing of a structure, the antenna sensor is bonded on the structure surface like a regular strain gage. Since the antenna resonance frequency is directly related with antenna dimension, which deforms when strain occurs on the structural surface, the deformation/strain can be correlated with antenna resonance frequency shift measured by an RFID reader. The slotted patch antenna sensor performance is first evaluated through mechanics-electromagnetics coupled simulation. Extensive experiments are then conducted to validate the antenna sensor performance, including tensile and compressive strain sensing, wireless interrogation range, and fatigue crack sensing.

Complex Antenna Factors of EMC Monopole Antenna (EMC 모노폴 안테나의 복소 안테나 인자)

  • 김기채
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.8
    • /
    • pp.1322-1328
    • /
    • 2000
  • This paper presents the characteristics of complex antenna factors of monopole antenna for the measuring time-domain fields above the ground plane. The method of moments with Galerkin's procedure is used to determine the current distribution of the antenna. The monopole antenna with chip resistor is discussed to reduce the reflection at low frequencies. Numerical results show that the magnitude of the complex antenna factor for the monopole with chip resistor is 5.6 dB as large as that of the conventional monopole antenna. The characteristics of the modified complex antenna factor to use the antenna factor are also treated at low frequencies. To verify the theoretical analysis, experimental results are compared with theoretical ones.

  • PDF

The generation and detection of binary signals by narrow terahertz dipole antenna (좁은 간격의 테라헤르츠 다이폴 안테나를 이용한 이진신호의 발생과 검출)

  • 전태인;김근주
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.5
    • /
    • pp.430-434
    • /
    • 2002
  • We present the magnitude of terahertz electromagnetic pulses when femtosecond laser pulses are moving along to a dipole antenna. The dipole antenna chip has maximum 4.7 nA THz current, generated at 11 DC volt. This current is 3.4 times bigger than the current of a $300{\mu}{\textrm}{m}$ separated transmission line structure chip that has 70 DC volt. We also apply an AC square wave voltage to the dipole antenna from 0.1 volt to 10 volt for binary signals using the terahertz electromagnetic pulses.

Analysis and Design of Stacked Helix Chip Antenna (적층형 헬릭스 칩 안테나의 해석과 설계)

  • Jung, Jin-Woo;Kim, Yu-Seon;Lee, Hyeon-Jin;Lim, Yeong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.11 s.353
    • /
    • pp.216-220
    • /
    • 2006
  • One of the approaches for reducing the size of the quarter wavelength monopole antenna is the helix and the stacked structure. This paper presents a formula for the relationship between the geometrical parameter and the operating frequency of a slacked helix chip antenna. The stacked helix chip antenna was designed for PCS/IMT-2000 dual-bands operation. The fabricated antenna uses an FR-4 substrate with relative permittivity of 4.2, and its dimensions are $15{\times}7.5{\times}0.4mm^3$. The measured impedance bandwidth (VSWR<2) is 400MHz at the operating frequency.

Sub-Terahertz On-Chip Microstrip Patch Antenna in CMOS with Metal Dummy Structures (메탈 더미 구조를 포함하는 서브 테라헤르츠 CMOS 온칩 마이크로스트립 패치 안테나)

  • Shim, Dongha;Yang, Ji Hoon;Han, Seung Han;Lee, Hyounmin;Kim, Ki Hoon;Kim, Hokyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.6
    • /
    • pp.505-508
    • /
    • 2017
  • This paper analyzes the effect of metal dummy structures in CMOS on antenna performances of a sub-terahertz on-chip microstrip patch antenna. A 400-GHz on-chip antenna is designed in a 45-nm CMOS process, and the resonance frequency and efficiency of the antenna are analyzed depending on the density of metal dummy structures. Antennas integrated with an oscillator are designed and fabricated for verification, and measurements are performed using quasi-optical methods with an FTIR and bolometer. The measurement results shows that the radiated power drops from 420 nW to 90 nW by 6.8 dB due to the dummy structures with the density of 27 %.

The Design of Small size and High Chip Type Ceramic Dielectric Antenna for Bluetooth Application (소형 고이득 Bluetooth용 칩형 유전체 안테나 설계)

  • 문정익;박성욱;이덕재;왕영성;이충국
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2001.11a
    • /
    • pp.77-81
    • /
    • 2001
  • This paper proposed a novel chip type ceramic dielectric antenna by using the advanced meander line technique that the radiational metals are formed on the face of ceramic dielectric(8 ${\times}$ 4 ${\times}$ 1.5 mm, alumina) and both facses of substrate(1.0 mm thickness, FR-4). The performance of the antenna model has a good agreements between measurements and computed results. Resultly, it has a 10 dB return-loss bandwidth(2.4~2.4835 GHz) and 1.7 dBi measured radiation gain for Bluetooth application. The proposed antenna model can overcome the problems of the radiation gain from the small antenna's size.

  • PDF

Griffiths' Algorithm Based Adaptive LMMSE Equalizers for HSDPA MIMO Systems (HSDPA MIMO 시스템을 위한 Griffiths 알고리즘 기반 적응 LMMSE Equalizer)

  • Joo, Jung-Suk
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.11
    • /
    • pp.28-34
    • /
    • 2011
  • In CDMA-based systems, recently, researches on chip-level equalization have been studied in order to improve receiving performance when supporting high-rate data services. In this paper, we propose Griffiths' algorithm based chip-level adaptive LMMSE equalizers for HSDPA MIMO systems using D-TxAA (dual stream transmit antenna array). First, we will derive two possible structures of Griffiths' algorithm based equalizer, and then compare their performance through computer simulations in various mobile channel environments.

Design of a 900 MHz RFID Compact LTCC Package Reader Antenna Using Faraday Cage (Faraday Cage를 이용한 900 MHz RFID 소형 LTCC 패키지 리더 안테나의 설계)

  • Kim, Ho-Yong;Mun, Byung-In;Lim, Hyung-Jun;Lee, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.5 s.120
    • /
    • pp.563-568
    • /
    • 2007
  • In this paper, the proposed package antenna, which is meander line structure with short pin, is miniaturized to realize RF-SoP at 900 MHz RFID band. The RFID BGA(Ball Grid Array) chip is put in a cavity of LTCC Layers. The coupling and cross talk, which are happen between BGA chip and proposed package antenna, are reduced by faraday cage, which consists of ground and via fences, is realized to enhance the isolation between BGA chip and antenna. The proposed antenna structure is focused on the package level antenna realization at low frequency band. The novel proposed package antenna size is $13mm{\times}9mm{\times}3.51mm$. The measured resonance frequency is 0.893 GHz. The impedance bandwidth is 9 MHz. The maximum gain of radiation pattern is -2.36 dBi.

Miniaturization Design of Tag Antenna for RFID System in 910 MHz band (910 MHz 대역 RFID용 태그 안테나의 소형화 설계)

  • Park, Gun-Do;Min, Kyeong-Sik
    • Journal of Navigation and Port Research
    • /
    • v.32 no.5
    • /
    • pp.363-368
    • /
    • 2008
  • This paper presents a miniaturization design technique of radio frequency identification (RFID) tag antenna operated in 910 MHz band. Miniaturization structure design for a tag antenna is performed by structure application of the folded dipole and meander line. In order to realize the maximum power transmission, imaginary part of a chip impedance and a tag antenna impedance is matched by complex conjugate number. The optimized tag antenna size is $50\;nm\;{\times}\;40\;nm\;{\times}\;1.6\;nm$ and its size is reduced about 62 % comparison with antenna size of reference [4]. The measured results of fabricated tag antenna are confirmed the reasonable agreement with prediction. The read range of the tag antenna with chip observed about 5 m.

Modified Inverted-F Type Wide Band Ceramic Dielectric Chip Antenna for IMT-2000 Handset (IMT-2000 단말기용 변형된 역 F형 광대역 세라믹 유전체 칩 안테나)

  • 이기성;채윤경;최익권
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.7
    • /
    • pp.625-632
    • /
    • 2002
  • In this paper, a wide band modified inverted-F type antenna printed on a high dielectric ceramic material is designed and fabricated. This antenna is designed to have optimum antenna characteristics analyzing the effects of design parameters such as printed antenna pattern, ceramic dielectric material dimension and dielectric constant on antenna characteristics using the commercial simulation tool HFSS. The fabricated antenna's width, length and height are 8 mm, 8 mm and 3 mm, respectively. Measurement results show that it has -10 dB bandwidth of 270 MHz which satisfies the IMT-2000 bandwidth required for handset and that its maximum radiation gain is 2 dBi.