• Title/Summary/Keyword: Chiller System

Search Result 190, Processing Time 0.028 seconds

Rotordynamic Analysis of a Turbo-Chiller with Varying Gear Loadings Part II : A Driven High-Speed Compressor Pinion-Impeller Rotor-Bearing System (터보 냉동기의 변동 기어하중을 고려한 로터다이나믹 해석 Part II : 피동 고속 압축기 피니언-임펠러 로터-베어링 시스템)

  • 이안성;정진희
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.1042-1049
    • /
    • 1999
  • In the Part I has been reported a rotordynamic analysis of the driving motor-bull gear rotor-bearing system of a turbo-chiller. In this study, Part II, a rotordynamic analysis is performed with the turbo-chiller compressor pinion-impeller rotor system supported on two fluid film bearings. The pinion-impeller rotor system is driven to a rated speed of 14,600 rpm through a speed-increasing pinion-bull gear. It is modeled utilizing the finite element method for analysis. As loadings on the bearings due to the gear action are significant in the system considered, each resultant bearing load is calculated statically by considering the generalized forces of the gear action as well as the rotor itself. The two support bearings, the generalized forces of the gear action as well as the rotor itself. The two support bearings, partial and 3-axial groove bearings, are designed to take their varying loads along with their varying load angles, and they are also analyzed to give their rotordynamic coefficients. Then, a complex rotordynamic analysis of the compressor pinion-impeller rotor-bearing system is carried out to evaluate its stability, whirl natural frequencies and mode shapes, and unbalance responses under various loading conditions. Results show that the bearings and entire rotor system are well designed regardless of operating conditions, i.e., loads and operating speeds.

  • PDF

Rotordynamic Analysis of a Turbo-Chiller with Varying Gear Loadings Part I ; A Driving Motor-Bull Gear Rotor-Bearing System (터보 냉동기의 변동 기어하중을 고려한 로터다이나믹 해석 Part I : 구동 모터-불기어 로터-베어링 시스템)

  • 이안성;정진희
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.593-599
    • /
    • 1999
  • A rotordynamic analysis is performed with a motor-bull gear rotor system supported on two partial bearings, which is intended to drive a high-speed turbo-chiller compressor impeller shaft through its built-in pinion gear. The motor-bull gear rotor system has a rated speed of 3,600 rpm, and is modeled utilizing the finite element method for analysis. As loadings on the bearings due to the gear action are significant in the system considered, each resultant bearing load is calculated statically by considering the generalized forces of the gear action as well as the rotor itself. The two support partial bearings are designed to take their varying loads along with their varying load angles, and they are also analyzed to give their rotordynamic coefficients. Then, a complex rotordynamic analysis of the motor-bull gear rotor-bearing system is carried out to evaluate its whirl natural frequencies and mode shapes and unbalance responses under various loading conditions. Results show that the bearings and entire rotor system are well designed regradless of operating conditions, i.e., loads and operating speeds.

  • PDF

Cycle simulation of a triple effect LiBr/water absorption chiller (삼중효용 LiBr/물 흡수식 냉방기의 사이클 시뮬레이션)

  • 조광운;정시영;정은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.1
    • /
    • pp.79-87
    • /
    • 1998
  • Basic design of a 50USRT(175㎾) triple effect absorption chiller driven by hot gas has been carried out for both parallel and series flow cycles. Parallel flow cycle showed higher COP, however, the temperature in the generator was also higher than that in series flow cycle. Dynamic operation behavior of a parallel flow system at off-design conditions, such as the change in heat transfer medium temperature or the construction change of the system components, has been investigated in detail. It was found that the cooling capacity was seriously decreased by reducing hot gas flow rate and UA-value in the high temperature generator. However, the system COP was improved, because thermal load in the system components was reduced. The COP and the cooling capacity was found to be improved as cooling water temperature decreased or chilled water temperature increased. The optimum ratio of solution distribution could be suggested by considering the COP, the cooling capacity and the highest temperature in the system, which is critical for corrosion.

  • PDF

Experimental Study of Process Chiller for Semiconductor Temperature Control (반도체 공정 온도제어용 칠러의 실험적 연구)

  • Cha, Dong-An;Kwon, Oh-Kyung;Oh, Myung-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.459-465
    • /
    • 2011
  • Excessive heat may be generated during the semiconductor manufacturing process. Therefore, precise control of temperature is required to maintain a constant ambient temperature and wafer temperature in the chamber. Compared to an industrial chiller, a semiconductor chiller's power consumption is high because it is in continuous operation for a year. Because of this high power consumption, it is necessary to develop an energy-efficient chiller by optimizing the operation. The competitiveness of domestic products is low because of the high energy consumption. We experimentally investigated a domestic semiconductor by conducting load change, temperature rise and fall, and control precision experiments. The experimental study showed that the chiller had 2.1-3.9 kW of cooling capacity and 0.56-0.93 of EER. The control precisions were ${\pm}1^{\circ}C$ and ${\pm}0.6^{\circ}C$ when the setting temperatures were $0^{\circ}C$ and $30^{\circ}C$ respectively.

Practical Modeling and PI Controller Design for Centrifugal Water Chillers (터보냉동기를 위한 실용적 모델링과 PI 제어기 설계)

  • Jeong, Seok-Kwon;Han, Sung-Joon;Jung, Young-Mi
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.4
    • /
    • pp.187-194
    • /
    • 2015
  • This paper describes the PI controller design based on a practical transfer function model for centrifugal water chillers. The rotational speed of a compressor and the opening angle of an electronic expansion valve were simultaneously regulated as manipulated variables to maintain temperature reference and to ensure high efficiency of the chiller. The COP according to the change in each variable was investigated by performing some static experiments, and it was reflected in the PI controller design to accomplish the high efficiency control. Especially, the practical transfer function model of the chiller was built based on the dynamic experimental data considering the strong inherent non-linearity and complexity of the chiller system. The validity of the designed PI controller was proven by some experimental results using the test facility and the results were also compared to the conventional evaporating pressure control results.

Optimization of Heat Transfer Area Distribution for a Hot Water Driven Absorption Chiller (중온수 흡수식 냉동기의 열전달 면적 최적화)

  • 정시영;조광운;이상수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.431-438
    • /
    • 2000
  • The major irreversibilities in absorption chillers are associated with the transfer of heat into and out from the machine and irreversible process inside the machine. By modeling only external irreversibilities(endo-reversible), a model was formulated to predict the ideal performance of a single-effect absorption chiller. Its actual performance including both external and internal irreversibilities was calculated with a in-house simulation program. The optimization of heat transfer area distribution was performed for both endo-reversible cycle and actual cycle. The equation of endo-reversible modeling was found to give about 2times higher cooling capacity than the simulation program. At optimal distribution, it was found that heat transfer area of the evaporator was about 30% of total area, that of the generator was 20%, and the rest 50% was for the absorber and condenser. The system COP for endo-reversible cycle was slightly higher than that for actual cycle. In the case of LiBr-water single-effect absorption chiller, the maximum cooling capacity was obtained near the condition that LMTD is same at all heat exchangers.

  • PDF

Experimental Study on the Control Characteristics of Each Channel in a Semiconductor Chiller (반도체 공정용 칠러의 채널별 제어특성에 관한 실험적 연구)

  • Kim, Hyeon-Joong;Kwon, Oh-Kyung;Cha, Dong-An;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1285-1292
    • /
    • 2011
  • The characteristics of a semiconductor chiller system with EEV have been experimentally studied. Three experiments on temperature changes (increase and decrease), load variation, and control precision were conducted to investigate the operating characteristics of the semiconductor chiller. The power consumption was 8.9 kW during increase in temperature. The required time was 37.5 min for CH1 and 39.5 min for CH2. Moreover, the time required for falling temperature was 26.5 min. The control precision for partial load operation was relatively low compared to that of a full load operation. In addition, the CH2 equipped with a step motor showed better control precision. The power consumed by the chiller for process cooling water was 1.8 kW, which was one-half of that consumed during the refrigeration cycle. The objective of this study is to provide an optimal control guideline for the semiconductor chiller design.

A Study on the Performance Characteristics of an Absorption Chiller for Variable Cooling Water Flow Rate at Partial Load Conditions (흡수식 냉온수기의 부분부하에 따른 냉각수 변유량시 성능특성에 관한 연구)

  • 박찬우;조현철;강용태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.26-33
    • /
    • 2004
  • In general, an absorption chiller or heat pump is operated under the constant cooling water flow rate condition even though the system works with a partial load. The objective of this paper is to study the effect of the cooling water flow rates and the temperature of cooling water on the system performance to find the energy saving methode for the partial load operation of the double effect $H_2O$/LiBr absorption chiller. It is found that the performance of the system is sensitive to the temperature of cooling water than the cooling water flow rate, so the decrease of the performance due to reducing the cooling water flow rate can be overcome with the reduction of the cooling water temperature by 1$^{\circ}C$. The flow rate of the cooling water flow rate ranges from 50% to 100% of the flow rate at normal conditions with a partial load. It is also found that the operation cost of the cooling water pump and the cooling tower can be reduced by 23%.

A Study on the identification of the noise source and noise reduction method of turbo chiller (터보 냉동기의 소음원 파악 및 저소음화에 대한 연구)

  • Jeon, Wan-Ho;Lee, Joon-Keun;Chung, Phil-Joong;Yom, Chang-Hun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.125-131
    • /
    • 2000
  • The turbo chiller uses centrifugal compressor, which operates at about 14500 rpm. Due to the high rpm of the impeller, the noise of chiller makes one of the serious problems. The possibility of the sound reduction by using absorbing material is studied in this paper. The generated sound propagates through the duct and then radiates to the outer field. So, the use of sound absorption material inside the duct is one of the effective methods. To study the effect of location of the material, we use Boundary Element Method to analyze the sound field inside the duct system. Numerical study shows the highest sound pressure region is near the elbow of curved duct. From the analysis, it is also shown that the elbow duct is the main radiator of noise and sound absorption treatment of this duct results noise reduction of the highest noise level at BPF and high frequency region.

  • PDF

Dynamic Analysis of Single-Effect/Double-Lift Libr-Water Absorption System using Low-Temperature Hot Water (저온수를 이용하는 일중효용/이단승온 리튬브로마이드-물 흡수식 시스템의 동적 해석)

  • Kim, Byong-Joo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.695-702
    • /
    • 2009
  • Dynamic behavior of Libr-water absorption system using low-temperature hot water was investigated numerically. Thermal-hydraulic model of single-effect/double-lift 100 RT chiller was developed by applying transient conservation equations of total mass, Libr mass, energy and momentum to each component. Transient variations of system properties and transport variables were analysed during start-up operation. Numerical analysis were performed to quantify the effects of bulk concentration and part-load operation on the system performance in terms of cooling capacity, coefficient of performance, and time constant of system. For an absorption chiller considered in the present study, optimum bulk concentration was found to exist, which resulted in the minimum time constant with stable cooling capacity. COP and time constant increased as the load decreased down to 40%, below which the time constant increased abruptly and COP decreased as the load decreased further.