• Title/Summary/Keyword: Chevron Nozzle

Search Result 3, Processing Time 0.017 seconds

Experimental analysis on noise reduction of subsonic jet flow with chevron nozzle (노즐 출구 형상에 따른 아음속 제트 유동의 소음 저감에 대한 실험적 연구)

  • Bae, Ju-Hyun;Lee, Kyu-Ho;Kong, Byung-Hak;Kim, Min-Woo;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.687-692
    • /
    • 2011
  • Experimental analysis has been carried out on noise reduction of subsonic jet flow with chevron nozzle to investigate relationships between geometry variation of chevron nozzles and jet noise reduction. Including base nozzle, seven nozzles are tested at Mach number 0.9. Parametric variables are chevron count, chevron length, and chevron shape. From these experiment, the more chevron count increase, the more jet noise reduction gain. Varying the chevron length, short chevron nozzle increase the jet noise at certain direction all the more. Chevron shape is also considered as important factor to reduce the jet noise.

  • PDF

Computational Study of Supersonic Chevron Ejector Flows (초음속 Chevron 이젝터 유동에 대한 수치해석적 연구)

  • Kong, Fanshi;Kim, Heuy Dong;Jin, Yingzi
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.89-96
    • /
    • 2013
  • Considering the complexity and difficulty on the researching, how to enhance the performance of ejector-diffuser system effectively became a significant task. In the present study, the supersonic nozzle was redesigned using Chevrons installed at the inlet of the secondary stream of the ejector-diffuser system for the purpose of the performance improvement. A CFD method based on Fluent has been applied to simulate the supersonic flows and shock waves inside the ejector. Primary numerical analysis results show that the Chevrons get a positive effect on the ejector flows. The comparison of ejector performance with and without the Chevron was obtained and optimal number of chevron lobe is discussed to increase the performance. The ejector-diffuser system performance is discussed in terms of the entrainment ratio, pressure recovery as well as total pressure loss.

A Study on Jet Engine Noise Analysis and Reduction for a Capstone Design Project (캡스톤 디자인 프로젝트 수행을 통한 제트엔진 소음특성 파악 및 저감 방안 연구)

  • Kim, Sitae;Kim, Hyuksoo;Cho, Minhyuk
    • Journal of Engineering Education Research
    • /
    • v.27 no.4
    • /
    • pp.21-27
    • /
    • 2024
  • This study introduces a series of processes aimed at understanding the noise characteristics generated by jet engines and devising measures to mitigate them through interdisciplinary capstone design projects. During the project execution, educational methods were applied to foster 4Cs (creativity, communication, collaboration, critical thinking) competencies. Project objectives were set through team discussions, and individual team members were assigned primary roles to act as subgroup leaders. As a result, the project was executed as follows: combustion tests were conducted using an SR-30 turbojet engine to generate noise, and the locations and characteristics of the noise sources were identified using beamforming techniques and frequency analysis applied to a 30-microphone array. Additionally, chevron nozzles were designed and fabricated to confirm their noise reduction performance.