• 제목/요약/키워드: Chen algorithm

검색결과 480건 처리시간 0.025초

Swarm Intelligence-based Power Allocation and Relay Selection Algorithm for wireless cooperative network

  • Xing, Yaxin;Chen, Yueyun;Lv, Chen;Gong, Zheng;Xu, Ling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권3호
    • /
    • pp.1111-1130
    • /
    • 2016
  • Cooperative communications can significantly improve the wireless transmission performance with the help of relay nodes. In cooperative communication networks, relay selection and power allocation are two key issues. In this paper, we propose a relay selection and power allocation scheme RS-PA-PSACO (Relay Selection-Power Allocation-Particle Swarm Ant Colony Optimization) based on PSACO (Particle Swarm Ant Colony Optimization) algorithm. This scheme can effectively reduce the computational complexity and select the optimal relay nodes. As one of the swarm intelligence algorithms, PSACO which combined both PSO (Particle Swarm Optimization) and ACO (Ant Colony Optimization) algorithms is effective to solve non-linear optimization problems through a fast global search at a low cost. The proposed RS-PA-PSACO algorithm can simultaneously obtain the optimal solutions of relay selection and power allocation to minimize the SER (Symbol Error Rate) with a fixed total power constraint both in AF (Amplify and Forward) and DF (Decode and Forward) modes. Simulation results show that the proposed scheme improves the system performance significantly both in reliability and power efficiency at a low complexity.

An Optimized Iterative Semantic Compression Algorithm And Parallel Processing for Large Scale Data

  • Jin, Ran;Chen, Gang;Tung, Anthony K.H.;Shou, Lidan;Ooi, Beng Chin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권6호
    • /
    • pp.2761-2781
    • /
    • 2018
  • With the continuous growth of data size and the use of compression technology, data reduction has great research value and practical significance. Aiming at the shortcomings of the existing semantic compression algorithm, this paper is based on the analysis of ItCompress algorithm, and designs a method of bidirectional order selection based on interval partitioning, which named An Optimized Iterative Semantic Compression Algorithm (Optimized ItCompress Algorithm). In order to further improve the speed of the algorithm, we propose a parallel optimization iterative semantic compression algorithm using GPU (POICAG) and an optimized iterative semantic compression algorithm using Spark (DOICAS). A lot of valid experiments are carried out on four kinds of datasets, which fully verified the efficiency of the proposed algorithm.

An LED SAHP-based Planar Projection PTCDV-hop Location Algorithm

  • Zhang, Yuexia;Chen, Hang;Jin, Jiacheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권9호
    • /
    • pp.4541-4554
    • /
    • 2019
  • This paper proposes a planar projection DV-hop location algorithm (PTCDV-hop) based on the LED semi-angle at half power (SAHP, which accounts for LED SAHP characteristics in visible light communication (VLC)) and uses the DV-hop algorithm for range-free localization. Distances between source nodes and nodes positioned in three-dimensional indoor space are projected onto a two-dimensional plane to reduce complexity. Circles are structured by assigning source nodes (projected onto the horizontal plane of the assigned nodes) to be centers and the projection distances as radii. The proposed PTCDV-hop algorithm then determines the position of node location coordinates using the trilateral-weighted-centroid algorithm. Simulation results show localization errors of the proposed algorithm are on the order of magnitude of a millimeter when three sources are used. The PTCDV-hop algorithm has higher positioning accuracy and stronger dominance than the traditional DV-hop algorithm.

Generalized SCAN Bit-Flipping Decoding Algorithm for Polar Code

  • Lou Chen;Guo Rui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권4호
    • /
    • pp.1296-1309
    • /
    • 2023
  • In this paper, based on the soft cancellation (SCAN) bit-flipping (SCAN-BF) algorithm, a generalized SCAN bit-flipping (GSCAN-BF-Ω) decoding algorithm is carried out, where Ω represents the number of bits flipped or corrected at the same time. GSCAN-BF-Ω algorithm corrects the prior information of the code bits and flips the prior information of the unreliable information bits simultaneously to improve the block error rate (BLER) performance. Then, a joint threshold scheme for the GSCAN-BF-2 decoding algorithm is proposed to reduce the average decoding complexity by considering both the bit channel quality and the reliability of the coded bits. Simulation results show that the GSCAN-BF-Ω decoding algorithm reduces the average decoding latency while getting performance gains compared to the common multiple SCAN bit-flipping decoding algorithm. And the GSCAN-BF-2 decoding algorithm with the joint threshold reduces the average decoding latency further by approximately 50% with only a slight performance loss compared to the GSCAN-BF-2 decoding algorithm.

Analysis of Different Activation Statuses of Human Mammary Epithelial Cells from Young and Old Groups

  • Feng, Chen-Chen;Chen, Li-Na;Chen, Mei-Jun;Li, Wan;Jia, Xu;Zhou, Yan-Yan;He, Wei-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권8호
    • /
    • pp.3763-3766
    • /
    • 2014
  • Human mammary epithelial cells have different proliferative statuses and demonstrate a close relationship with age and cell proliferation. Research on this topic could help understand the occurrence, progression and prognosis of breast cancer. In this article, using significance analysis of a microarray algorithm, we analyzed gene expression profiles of human mammary epithelial cells of different proliferative statuses and different age groups. The results showed there were significant differences in gene expression in the same proliferation status between elderly and young groups. Three common differentially expressed genes were found to dynamically change with the proliferation status and to be closely related to tumorigenesis. We also found elderly group had less status-related differential genes from actively proliferating status to intermediate status and more statusrelated differential genes from intermediate status than the young group. Finally, functional enrichment analyses allowed evaluation of the detailed roles of these differentially-expressed genes in tumor progression.

매립토공량 계산식에 관한 연구 (A Study on the Reclamation Earthwork Calculation Formula)

  • 이용희;문두열
    • 한국항만학회지
    • /
    • 제15권1호
    • /
    • pp.87-97
    • /
    • 2001
  • The calculation of earthwork plays a major role in plan or design of many civil engineering projects, and thus it has become very important to advanced the accuracy of earthwork calculation. Current method used for estimating the volume of pit excavation assumes that the ground profile between the grid points is linear(trapezoidal rule), or nonlinear(simpson's formulas). In this paper the spot height method, least square method, and chamber formulas, Chen and Lin method are compared with the volumes of the pits in these examples. As a result of this study, algorithm of chen and Lin me쇙 by spline method should provide a better accuracy than the spot height method, least square method, chamber formulas. The Chen and Lin formulas can be used for estimating the excavation volume of a pit divide into a grid with unequal intervals. From the characteristics of the cubic spline polynomial, the modeling curve of the Chen and Lin method is smooth and matches the ground profile well. Generally speaking, the nonlinear profile formulas provide better accuracy than the linear profile formulas. The mathematical model mentioned make an offer maximum accuracy in estimating the volume of a pit excavation.

  • PDF

Study on gesture recognition based on IIDTW algorithm

  • Tian, Pei;Chen, Guozhen;Li, Nianfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권12호
    • /
    • pp.6063-6079
    • /
    • 2019
  • When the length of sampling data sequence is too large, the method of gesture recognition based on traditional Dynamic Time Warping (DTW) algorithm will lead to too long calculation time, and the accuracy of recognition result is not high.Support vector machine (SVM) has some shortcomings in precision, Edit Distance on Real Sequences(EDR) algorithm does not guarantee that noise suppression will not suppress effective data.A new method based on Improved Interpolation Dynamic Time Warping (IIDTW)algorithm is proposed to improve the efficiency of gesture recognition and the accuracy of gesture recognition. The results show that the computational efficiency of IIDTW algorithm is more than twice that of SVM-DTW algorithm, the error acceptance rate is FAR reduced by 0.01%, and the error rejection rate FRR is reduced by 0.5%.Gesture recognition based on IIDTW algorithm can achieve better recognition status. If it is applied to unlock mobile phone, it is expected to become a new generation of unlock mode.

센서 네트워크 기반의 홀리스틱 분산 클러스터링 알고리즘 (A holistic distributed clustering algorithm based on sensor network)

  • 진평;임기욱;남지은;이경오
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.874-877
    • /
    • 2008
  • Nowadays the existing data processing systems can only support some simple query for sensor network. It is increasingly important to process the vast data streams in sensor network, and achieve effective acknowledges for users. In this paper, we propose a holistic distributed k-means algorithm for sensor network. In order to verify the effectiveness of this method, we compare it with central k-means algorithm to process the data streams in sensor network. From the evaluation experiments, we can verify that the proposed algorithm is highly capable of processing vast data stream with less computation time. This algorithm prefers to cluster the data streams at the distributed nodes, and therefore it largely reduces redundant data communications compared to the central processing algorithm.

DSLA: Dynamic Sampling Localization Algorithm Based on Virtual Anchor Node

  • Chen, Yanru;Yan, Bingshu;Wei, Liangxiong;Guo, Min;Yin, Feng;Luo, Qian;Wang, Wei;Chen, Liangyin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권10호
    • /
    • pp.4940-4957
    • /
    • 2019
  • Compared with the localization methods in the static sensor networks, node localization in dynamic sensor networks is more complicated due to the mobility of the nodes. Dynamic Sampling Localization Algorithm Based on Virtual Anchor (DSLA) is proposed in this paper to localize the unknown nodes in dynamic sensor networks. Firstly, DSLA algorithm predicts the speed and movement direction of nodes to determine a sector sampling area. Secondly, a method of calculating the sampling quantity with the size of the sampling area dynamically changing is proposed in this paper. Lastly, the virtual anchor node, i.e., the unknown node that got the preliminary possible area (PLA), assists the other unknown nodes to reduce their PLAs. The last PLA is regarded as a filtering condition to filter out the conflicting sample points quickly. In this way, the filtered sample is close to its real coordinates. The simulation results show that the DSLA algorithm can greatly improve the positioning performance when ensuring the execution time is shorter and the localization coverage rate is higher. The localization error of the DSLA algorithm can be dropped to about 20%.

Coalition based Optimization of Resource Allocation with Malicious User Detection in Cognitive Radio Networks

  • Huang, Xiaoge;Chen, Liping;Chen, Qianbin;Shen, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권10호
    • /
    • pp.4661-4680
    • /
    • 2016
  • Cognitive radio (CR) technology is an effective solution to the spectrum scarcity issue. Collaborative spectrum sensing is known as a promising technique to improve the performance of spectrum sensing in cognitive radio networks (CRNs). However, collaborative spectrum sensing is vulnerable to spectrum data falsification (SSDF) attack, where malicious users (MUs) may send false sensing data to mislead other secondary users (SUs) to make an incorrect decision about primary user (PUs) activity, which is one of the key adversaries to the performance of CRNs. In this paper, we propose a coalition based malicious users detection (CMD) algorithm to detect the malicious user in CRNs. The proposed CMD algorithm can efficiently detect MUs base on the Geary'C theory and be modeled as a coalition formation game. Specifically, SSDF attack is one of the key issues to affect the resource allocation process. Focusing on the security issues, in this paper, we analyze the power allocation problem with MUs, and propose MUs detection based power allocation (MPA) algorithm. The MPA algorithm is divided into two steps: the MUs detection step and the optimal power allocation step. Firstly, in the MUs detection step, by the CMD algorithm we can obtain the MUs detection probability and the energy consumption of MUs detection. Secondly, in the optimal power allocation step, we use the Lagrange dual decomposition method to obtain the optimal transmission power of each SU and achieve the maximum utility of the whole CRN. Numerical simulation results show that the proposed CMD and MPA scheme can achieve a considerable performance improvement in MUs detection and power allocation.