• Title/Summary/Keyword: Chen algorithm

Search Result 496, Processing Time 0.034 seconds

High-Performance Spatial and Temporal Error-Concealment Algorithms for Block-Based Video Coding Techniques

  • Hsu, Ching-Ting;Chen, Mei-Juan;Liao, Wen-Wei;Lo, Shen-Yi
    • ETRI Journal
    • /
    • v.27 no.1
    • /
    • pp.53-63
    • /
    • 2005
  • A compressed video bitstream is sensitive to errors that may severely degrade the reconstructed images even when the bit error rate is small. One approach to combat the impact of such errors is the use of error concealment at the decoder without increasing the bit rate or changing the encoder. For spatial-error concealment, we propose a method featuring edge continuity and texture preservation as well as low computation to reconstruct more visually acceptable images. Aiming at temporal error concealment, we propose a two-step algorithm based on block matching principles in which the assumption of smooth and uniform motion for some adjacent blocks is adopted. As simulation results show, the proposed spatial and temporal methods provide better reconstruction quality for damaged images than other methods.

  • PDF

An Improved Zone-Based Routing Protocol for Heterogeneous Wireless Sensor Networks

  • Zhao, Liquan;Chen, Nan
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.500-517
    • /
    • 2017
  • In this paper, an improved zone-based routing protocol for heterogeneous wireless sensor networks is proposed. The proposed protocol has fixed the sized zone according to the distance from the base station and used a dynamic clustering technique for advanced nodes to select a cluster head with maximum residual energy to transmit the data. In addition, we select an optimal route with minimum energy consumption for normal nodes and conserve energy by state transition throughout data transmission. Simulation results indicated that the proposed protocol performed better than the other algorithm by reducing energy consumption and providing a longer network lifetime and better throughput of data packets.

Calculation of dynamic stress intensity factors and T-stress using an improved SBFEM

  • Tian, Xinran;Du, Chengbin;Dai, Shangqiu;Chen, Denghong
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.649-663
    • /
    • 2018
  • The scaled boundary finite element method is extended to evaluate the dynamic stress intensity factors and T-stress with a numerical procedure based on the improved continued-fraction. The improved continued-fraction approach for the dynamic stiffness matrix is introduced to represent the inertial effect at high frequencies, which leads to numerically better conditioned matrices. After separating the singular stress term from other high order terms, the internal displacements can be obtained by numerical integration and no mesh refinement is needed around the crack tip. The condition numbers of coefficient matrix of the improved method are much smaller than that of the original method, which shows that the improved algorithm can obtain well-conditioned coefficient matrices, and the efficiency of the solution process and its stability can be significantly improved. Several numerical examples are presented to demonstrate the increased robustness and efficiency of the proposed method in both homogeneous and bimaterial crack problems.

Unsupervised Single Moving Object Detection Based on Coarse-to-Fine Segmentation

  • Zhu, Xiaozhou;Song, Xin;Chen, Xiaoqian;Lu, Huimin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2669-2688
    • /
    • 2016
  • An efficient and effective unsupervised single moving object detection framework is presented in this paper. Given the sparsely labelled trajectory points, we adopt a coarse-to-fine strategy to detect and segment the foreground from the background. The superpixel level coarse segmentation reduces the complexity of subsequent processing, and the pixel level refinement improves the segmentation accuracy. A distance measurement is devised in the coarse segmentation stage to measure the similarities between generated superpixels, which can then be used for clustering. Moreover, a Quadmap is introduced to facilitate the refinement in the fine segmentation stage. According to the experiments, our algorithm is effective and efficient, and favorable results can be achieved compared with state-of-the-art methods.

Accelerated Split Bregman Method for Image Compressive Sensing Recovery under Sparse Representation

  • Gao, Bin;Lan, Peng;Chen, Xiaoming;Zhang, Li;Sun, Fenggang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2748-2766
    • /
    • 2016
  • Compared with traditional patch-based sparse representation, recent studies have concluded that group-based sparse representation (GSR) can simultaneously enforce the intrinsic local sparsity and nonlocal self-similarity of images within a unified framework. This article investigates an accelerated split Bregman method (SBM) that is based on GSR which exploits image compressive sensing (CS). The computational efficiency of accelerated SBM for the measurement matrix of a partial Fourier matrix can be further improved by the introduction of a fast Fourier transform (FFT) to derive the enhanced algorithm. In addition, we provide convergence analysis for the proposed method. Experimental results demonstrate that accelerated SBM is potentially faster than some existing image CS reconstruction methods.

EXTRACTION OF WATERMARKS BASED ON INDEPENDENT COMPONENT ANALYSIS

  • Thai, Hien-Duy;Zensho Nakao;Yen- Wei Chen
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.407-410
    • /
    • 2003
  • We propose a new logo watermark scheme for digital images which embed a watermark by modifying middle-frequency sub-bands of wavelet transform. Independent component analysis (ICA) is introduced to authenticate and copyright protect multimedia products by extracting the watermark. To exploit the Human visual system (HVS) and the robustness, a perceptual model is applied with a stochastic approach based on noise visibility function (NVF) for adaptive watermarking algorithm. Experimental results demonstrated that the watermark is perfectly extracted by ICA technique with excellent invisibility, robust against various image and digital processing operators, and almost all compression algorithms such as Jpeg, jpeg 2000, SPIHT, EZW, and principal components analysis (PCA) based compression.

  • PDF

A Study on Development of Expert System for Collision Avoidance and Navigation(I): Basic Design

  • Jeong, Tae-Gwoen;Chen, Chao
    • Journal of Navigation and Port Research
    • /
    • v.32 no.7
    • /
    • pp.529-535
    • /
    • 2008
  • As a method to reduce collision accidents of ships at sea, this paper suggests an expert system for collision avoidance and navigation (hereafter "ESCAN"). The ESCAN is designed and developed by using the theory and technology of expert system and based on the information provided by AIS and RADAR/ARPA system. In this paper the ESCAN is composed of four(4) components; Facts/Data Base in charge of preserving data from navigational equipment, Knowledge Base storing production rules of the ESCAN, Inference Engine deciding which rules are satisfied by facts or objects, User System Interface for communication between users and ESCAN. The ESCAN has the function of real--time analysis and judgment of various encountering situations between own ship and targets, and is to provide navigators with appropriate plans of collision avoidance and additional advice and recommendation This paper, as a basic study, is to introduce the basic design and function of ESCAN.

New decoupled wavelet bases for multiresolution structural analysis

  • Wang, Youming;Chen, Xuefeng;He, Yumin;He, Zhengjia
    • Structural Engineering and Mechanics
    • /
    • v.35 no.2
    • /
    • pp.175-190
    • /
    • 2010
  • One of the intractable problems in multiresolution structural analysis is the decoupling computation between scales, which can be realized by the operator-orthogonal wavelets based on the lifting scheme. The multiresolution finite element space is described and the formulation of multiresolution finite element models for structural problems is discussed. Various operator-orthogonal wavelets are constructed by the lifting scheme according to the operators of multiresolution finite element models. A dynamic multiresolution algorithm using operator-orthogonal wavelets is proposed to solve structural problems. Numerical examples demonstrate that the lifting scheme is a flexible and efficient tool to construct operator-orthogonal wavelets for multiresolution structural analysis with high convergence rate.

Period doubling of the nonlinear dynamical system of an electrostatically actuated micro-cantilever

  • Chen, Y.M.;Liu, J.K.
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.743-763
    • /
    • 2014
  • The paper presents an investigation of the nonlinear dynamical system of an electrostatically actuated micro-cantilever by the incremental harmonic balance (IHB) method. An efficient approach is proposed to tackle the difficulty in expanding the nonlinear terms into truncated Fourier series. With the help of this approach, periodic and multi-periodic solutions are obtained by the IHB method. Numerical examples show that the IHB solutions, provided as many as harmonics are taken into account, are in excellent agreement with numerical results. In addition, an iterative algorithm is suggested to accurately determine period doubling bifurcation points. The route to chaos via period doublings starting from the period-1 or period-3 solution are analyzed according to the Floquet and the Feigenbaum theories.

Watershed Segmentation of High-Resolution Remotely Sensed Imagery

  • WANG Ziyu;ZHAO Shuhe;CHEN Xiuwan
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.107-109
    • /
    • 2004
  • High-resolution remotely sensed data such as SPOT-5 imagery are employed to study the effectiveness of the watershed segmentation algorithm. Existing problems in this approach are identified and appropriate solutions are proposed. As a case study, the panchromatic SPOT-5 image of part of Beijing urban areas has been segmented by using the MATLAB software. In segmentation, the structuring element has been firstly created, then the gaps between objects have been exaggerated and the objects of interest are converted. After that, the intensity valleys have been detected and the watershed segmentation have been conducted. Through this process, the objects in an image are divided into separate objects. Finally, the effectiveness of the watershed segmentation approach for high-resolution imagery has been summarized. The approach to solve the problems such as over-segmentation has been proposed.

  • PDF