• Title/Summary/Keyword: Chemotherapy drugs

Search Result 277, Processing Time 0.026 seconds

Molecular Analysis of Isoniazid-Resistance Related Genes of Mycobacterium tuberculosis Isolated from Korea

  • Hwang Joo Hwan;Jeong Eun Young;Choi Yeon Im;Bae Kiho;Song Taek Sun;Cho Sang-Nae;Lee Hyeyoung
    • Biomedical Science Letters
    • /
    • v.11 no.4
    • /
    • pp.455-463
    • /
    • 2005
  • Resistance to isoniazid (INH), which is one of the most important drugs in Mycobacterium tuberculosis chemotherapy, has been associated with mutations in genes encoding the mycobacterial catalse-peroxidase (katG), the enoyl acyl carrier protein (ACP) reductase (inhA), alkyl hydroperoxide reductase (ahpC), beta-ketoacyl acyl carrier protein synthase (kasA), and NADH dehydrogenase (ndh). In this study, we examined INH-resistance related genes in 50 INH-resistant and 24 INH-susceptible isolates by PCR-sequence analysis. In brief, mutations at the katG gene were found at codon 315 alone (2/50), at codon 463 alone (19/50), and both at 315 and 463 (29/50). However, while mutations at codon 315 were only detected in INH-resistant isolates, mutations at codon 463 were also detected in INH-susceptible isolates indicating mutations at 463 alone do not seem to confer resistance to INH. Similar to the case of katG 463, some of inhA mutations were also found among INH-susceptible isolates. For example, whereas mutations at 8 upstream of the start codon (UPS) and 15 UPS of the inhA gene were detected only in INH-resistant isolates, mutations at 101, 115, and 125 UPS were detected only in INH-susceptible isolates. Many different kinds of mutations were detected in INH­resistant isolates at ahpC, oxyR gene, and intergenic region of the oxyR-ahpC genes. Howerver, the mutations were not found oxyR and the intergenic regions in INH-susceptible isolates. No mutations were found at either kasA or at ndh gene among INH-resistant isolates. In conclusion, some of mutations such as katG 315, inhA promotor region, and oxyR-ahpC seem to be strongly related to INH-resistance. Currently we are developing a molecular diagnostic method based on these results.

  • PDF

Establishment of an Allo-Transplantable Hamster Cholangiocarcinoma Cell Line and Its Application for In Vivo Screening of Anti-cancer Drugs

  • Puthdee, Nattapong;Vaeteewoottacharn, Kulthida;Seubwai, Wunchana;Wonkchalee, Orasa;Keawkong, Worasak;Juasook, Amornrat;Pinloar, Somchai;Pairojkul, Chawalit;Wongkham, Chaisiri;Okada, Seiji;Boonmars, Thidarut;Wongkham, Sopit
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.6
    • /
    • pp.711-717
    • /
    • 2013
  • Opisthorchis viverrini (O. viverrini) is a well-known causative agent of cholangiocarcinoma (CCA) in humans. CCA is very resistant to chemotherapy and is frequently fatal. To understand the pathogenesis of CCA in humans, a rodent model was developed. However, the development of CCA in rodents is time-consuming and the xenograft-transplantation model of human CCA in immunodeficient mice is costly. Therefore, the establishment of an in vivo screening model for O. viverrini-associated CCA treatment was of interest. We developed a hamster CCA cell line, Ham-1, derived from the CCA tissue of O. viverrini-infected and N-nitrosodimethylamine-treated Syrian golden hamsters. Ham-1 has been maintained in Dulbecco's Modified Essential Medium supplemented with 10% fetal bovine serum for more than 30 subcultures. These cells are mostly diploid (2n=44) with some being polyploid. Tumorigenic properties of Ham-1 were demonstrated by allograft transplantation in hamsters. The transplanted tissues were highly proliferative and exhibited a glandular-like structure retaining a bile duct marker, cytokeratin 19. The usefulness of this for in vivo model was demonstrated by berberine treatment, a traditional medicine that is active against various cancers. Growth inhibitory effects of berberine, mainly by an induction of G1 cell cycle arrest, were observed in vitro and in vivo. In summary, we developed the allo-transplantable hamster CCA cell line, which can be used for chemotherapeutic drug testing in vitro and in vivo.

Protective Effect of Astragalus polysaccharides on Liver Injury Induced by Several Different Chemotherapeutics in Mice

  • Liu, Wen;Gao, Fang-Fang;Li, Qun;Lv, Jia-Wei;Wang, Ying;Hu, Peng-Chao;Xiang, Qing-Ming;Wei, Lei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10413-10420
    • /
    • 2015
  • Side effects are an unavoidable consequence of chemotherapy drugs, during which liver injury often takes place. The current study was designed to investigate the protective effect of Astragalus polysaccharides (APS) against the hepatotoxicity induced by frequently-used chemical therapy agents, cyclophosphamide (CTX), docetaxel (DTX) and epirubicin (EPI)) in mice. Mice were divided into five groups, controls, low or high dose groups ($DTX_L$, $CTX_L$, $EPI_L$ or $DTX_H$, $CTX_H$, $EPI_H$), and low or high dose chemotherapeutics+APS groups ($DTX_L$+APS, $CTX_L$+APS, $EPI_L$+APS or $DTX_H$+APS, $CTX_H$+APS, $EPI_H$+APS). Controls were treated with equivalent normal saline for 28 days every other day; low or high dose group were intraperitoneal (i.p) injected with low or high doses of CTX, DTX and EPI for 28 days every other day; low or high dose chemotherapeutics+APS group were separately intraperitoneal (i.p) injected with chemotherapeutics for 28 days every other day and i.p with APS (100 mg/kg) for 7 days continually from the 22th to the 28th days. The body weight, serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), histopathological features, and ultrastructure morphological change of liver tissues, protein expression level of caspase-3 were estimated at different time points. With high dose treatment of DTX, CTX and EPI, weight gain was inhibited and serum levels of ALT and AST were significantly increased. Sections of liver tissue showed massive hepatotoxicity in $CTX_H$ group compared to the control group, including hepatic lobule disorder, granular and vacuolar degeneration and necrosis in hepatic cells. These changes were confirmed at ultrastructural level, including obvious pyknosis, heterochromatin aggregation, nuclear membrane resolution, and chondrosome crystal decrease. Western blotting revealed that the protein levels of caspase-3 increased in $CTX_H$ group. The low dose groups exhibited trivial hepatotoxicity. More interestingly, after 100 mg/kg APS, liver injury was redecued not only regarding serum transaminase activities (low or high dose chemotherapeutics+APS group), but also from pathological and ultrastructural changes and the protein levels of caspase-3 ($CTX_H$+APS group). In conclusion, DTX, CTX and EPI induce liver damage in a dose dependent manner, whereas APS exerted protective effects.

Autophagy Inhibition with Monensin Enhances Cell Cycle Arrest and Apoptosis Induced by mTOR or Epidermal Growth Factor Receptor Inhibitors in Lung Cancer Cells

  • Choi, Hyeong Sim;Jeong, Eun-Hui;Lee, Tae-Gul;Kim, Seo Yun;Kim, Hye-Ryoun;Kim, Cheol Hyeon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.75 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • Background: In cancer cells, autophagy is generally induced as a pro-survival mechanism in response to treatment-associated genotoxic and metabolic stress. Thus, concurrent autophagy inhibition can be expected to have a synergistic effect with chemotherapy on cancer cell death. Monensin, a polyether antibiotic, is known as an autophagy inhibitor, which interferes with the fusion of autophagosome and lysosome. There have been a few reports of its effect in combination with anticancer drugs. We performed this study to investigate whether erlotinib, an epidermal growth factor receptor inhibitor, or rapamycin, an mammalian target of rapamycin (mTOR) inhibitor, is effective in combination therapy with monensin in non-small cell lung cancer cells. Methods: NCI-H1299 cells were treated with rapamycin or erlotinib, with or without monensin pretreatment, and then subjected to growth inhibition assay, apoptosis analysis by flow cytometry, and cell cycle analysis on the basis of the DNA contents histogram. Finally, a Western blot analysis was done to examine the changes of proteins related to apoptosis and cell cycle control. Results: Monensin synergistically increases growth inhibition and apoptosis induced by rapamycin or erlotinib. The number of cells in the sub-$G_1$ phase increases noticeably after the combination treatment. Increase of proapoptotic proteins, including bax, cleaved caspase 3, and cleaved poly(ADP-ribose) polymerase, and decrease of anti-apoptotic proteins, bcl-2 and bcl-xL, are augmented by the combination treatment with monensin. The promoters of cell cycle progression, notch3 and skp2, decrease and p21, a cyclin-dependent kinase inhibitor, accumulates within the cell during this process. Conclusion: Our findings suggest that concurrent autophagy inhibition could have a role in lung cancer treatment.

Senescence as A Consequence of Ginsenoside Rg1 Response on K562 Human Leukemia Cell Line

  • Liu, Jun;Cai, Shi-Zhong;Zhou, Yue;Zhang, Xian-Ping;Liu, Dian-Feng;Jiang, Rong;Wang, Ya-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6191-6196
    • /
    • 2012
  • Aims and Background: Traditional chemotherapy strategies for human leukemia commonly use drugs based on cytotoxicity to eradicate cancer cells. One predicament is that substantial damage to normal tissues is likely to occur in the course of standard treatments. Obviously, it is urgent to explore therapies that can effectively eliminate malignant cells without affecting normal cells. Our previous studies indicated that ginsenoside $Rg_1$ ($Rg_1$), a major active pharmacological ingredient of ginseng, could delay normal hematopoietic stem cell senescence. However, whether $Rg_1$ can induce cancer cell senescence is still unclear. Methods: In the current study, human leukemia K562 cells were subjected to $Rg_1$ exposure. The optimal drug concentration and duration with K562 cells was obtained by MTT colorimetric test. Effects of $Rg_1$ on cell cycle were analyzed using flow cytometry and by SA-${\beta}$-Gal staining. Colony-forming ability was measured by colony-assay. Telomere lengths were assessed by Southern blotting and expression of senescence-associated proteins P21, P16 and RB by Western blotting. Ultrastructural morphology changes were observed by transmission electron microscopy. Results: K562 cells demonstrated a maximum proliferation inhibition rate with an $Rg_1$ concentration of $20{\mu}\;mol{\cdot}L^{-1}$ for 48h, the cells exhibiting dramatic morphological alterations including an enlarged and flat cellular morphology, larger mitochondria and increased number of lysosomes. Senescence associated-${\beta}$-galactosidase (SA-${\beta}$-Gal) activity was increased. K562 cells also had decreased ability for colony formation, and shortened telomere length as well as reduction of proliferating potential and arrestin $G_2$/M phase after $Rg_1$ interaction. The senescence associated proteins P21, P16 and RB were significantly up-regulated. Conclusion: Ginsenoside $Rg_1$ can induce a state of senescence in human leukemia K562 cells, which is associated with p21-Rb and p16-Rb pathways.

Efficacy and Tolerability of Adjuvant Oral Capecitabine plus Intravenous Oxaliplatin (XELOX) in Asian Patients with Colorectal Cancer: 4-Year Analysis

  • Chiu, Joanne;Tang, Vikki;Leung, Roland;Wong, Hilda;Chu, Kin Wah;Poon, Jensen;Epstein, Richard J.;Yau, Thomas
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6585-6590
    • /
    • 2013
  • Background: Although FOLFOX (infusional fluorouracil/leucovorin plus oxaliplatin) is established as a standard chemotherapeutic regimen, the long term efficacy of adjuvant XELOX (oral capecitabine plus intravenous oxaliplatin) in Asian colorectal cancer (CRC) patients remains anecdotal. Moreover, uncertainties persist as to whether pharmacogenetic differences in Asian populations preclude equally tolerable and effective administration of these drugs. Method: One hundred consecutive patients with resected colorectal cancer received adjuvant XELOX (oxaliplatin 130 $mg/m^2$ on day 1 plus capecitabine 900 $mg/m^2$ twice daily on day 1 to 14 every 3 weeks for 8 cycles) at Queen Mary Hospital, Hong Kong. Endpoints monitored during follow-up were disease-free survival (DFS) and disease recurrence, overall survival (OS) and adverse events (AEs). Results: The median patient age was 56 years, 56% were diagnosed with rectal cancer and 44% with colonic cancer. After a median follow-up of 4.3 years (95% confidence interval, 3.2-4.7), 24 recurrences were confirmed including 13 patients who died due to progressive disease. Four-year DFS was 81% in colon cancer patients and 67% in rectal cancer patients (p=0.06 by log-rank test). For the cohort as a whole, OS was 90% at 3 years and 84% at 5 years. Treatment-related AEs led to early withdrawal in four patients. The commonest non-hematological AEs were neuropathy (91%), hand-foot syndrome (49%) and diarrhea (46%), while the commonest grade 3/4 AEs were neutropenia (11%) and diarrhea (10%). Conclusion: These results confirm the favourable long term survival benefit with good tolerability in using adjuvant XELOX in treating East Asian colorectal cancer patients.

Comparison of in Vitro Cytotoxicity and Apoptogenic Activity of Magnesium Chloride and Cisplatin as Conventional Chemotherapeutic Agents in the MCF-7 Cell Line

  • Mirmalek, Seyed Abbas;Jangholi, Ehsan;Jafari, Mohammad;Yadollah-Damavandi, Soheila;Javidi, Mohammad Amin;Parsa, Yekta;Parsa, Tina;Salimi-Tabatabaee, Seyed Alireza;Kolagar, Hossein Ghasemzadeh;Jalil, Saeed Khazaei;Alizadeh-Navaei, Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.sup3
    • /
    • pp.131-134
    • /
    • 2016
  • Breast cancer is the most common malignancy and also the second leading cause of cancer death among women and also in women that have a high mortality. Previous studies showed that magnesium (Mg) has cytotoxic effects on malignant cell lines. However, the anti-cancer effects of Mg on MCF-7 breast cancer cells are uncertain. This study was aimed at the comparison of the cytotoxic effect of Mg salt (MgCl2) and cisplatin on MCF-7 cells and fibroblasts (as normal cells). After treatment with various concentrations of MgCl2, and cisplatin as a positive control for 24 and 48 hours (h), cytotoxicity activity was measured by MTT assay. In addition, apoptosis was determined by annexin V/propidium iide assay. Both cisplatin and the MgCl2 exhibited dose-dependent cytotoxic effects in the MCF-7 cell line, although the LD50 of the Mg was significantly higher when compared to cispaltin ($40{\mu}g/ml$ vs. $20{\mu}g/ml$). Regarding annexin V/propidium results, treatment of MCF-7 cells with LD50 concentrations of cisplatin and Mg showed 59% and 44% apoptosis at 24h, respectively. Finally, the results indicated that Mg has cytotoxic effects on MCF-7 cells, but less than cisplatin as a conventional chemotherapeutic agent. However, regarding the side effects of chemotherapy drugs, it seems that Mg can be considered as a supplement for the treatment of breast cancer.

A New Bioluminescent Rat Prostate Cancer Cell Line: Rapid and Accurate Monitoring of Tumor Growth (효과적인 항암효능측정을 위한 발광 전립선 세포의 개발 및 평가)

  • Lee, Mi-Sook;Jung, Jae-In;Kwon, Seung-Hae;Shim, In-Sop;Hahm, Dae-Hyun;Han, Jeong-Jun;Han, Dae-Seok;Yoonpark, Jung-Han;Her, Song
    • Journal of Life Science
    • /
    • v.20 no.11
    • /
    • pp.1738-1741
    • /
    • 2010
  • Caliper measurements of tumor volume have been widely used in the assessment of tumors in animal models. However, experiments based on caliper data have resulted in unreliable estimates of tumor growth, due to necrotic areas of tumor mass. To overcome this systematic bias, we engineered a new luciferase-expressing rat prostate cancer cell line (MLL-Luc) that produces bioluminescence from viable cancer cells. MLL-Luc cells showed a strong correlation between bioluminescence intensity and cell number ($R^2$=0.99) and also accurately quantified tumor growth, with reduced bioluminescence signals caused by necrotic cells in a subcutaneous MLL-Luc xenograft model. The accurate quantification of tumor growth with bioluminescence imaging (BLI) was confirmed by a better antitumor effect of combination chemotherapy, compared to that based on caliper measurements with a correlation between the bioluminescence signal and tumor volume ($R^2$=0.84). These data suggest that bioluminescent MLL xenografts are a powerful and quantitative tool for monitoring tumor growth and are useful in evaluating the efficacy of anticancer drugs, with less systematic bias.

Effects of Regional Hyperthermia with Moderate Temperature on Cancer Treatment (국부 중등도 온열요법의 암치료 효과)

  • Kang, Chi-Dug;Kim, Sun-Hee
    • Journal of Life Science
    • /
    • v.26 no.9
    • /
    • pp.1088-1096
    • /
    • 2016
  • Despite that moderate hyperthermia can exert various antitumor activities such as direct cytotoxic effects on tumor cells, effects on tumor vasculatures and immunological effects, hyperthermia has been usually combined with radiotherapy or chemotherapy due to its limited efficacy in cancer treatment, showing some positive clinical benefits with generally well-tolerated side effects. Since heat shock responses itself can interfere with the anti-tumor effects of hyperthermia, not all of these studies might have demonstrated positive clinical outcomes in cancer patients. Therefore, the negative anti-tumor effect of hyperthermia should be reduced to enhance the effectiveness of hyperthermia. Although the responses to heat stress of tumor tissues containing vessels, immune cells, connective tissues as well as cancer cells, are very complicated, it is needed to study in the near future if some clinically available drugs, which can modulate heat stress responses, can improve the efficacy of hyperthermia in patients with cancer. In this review, the effect of clinical hyperthermia centered on non-invasive external hyperthermia using radiofrequency at moderate temperature will be discussed, since it is the state-of-the-art technology in the current clinical practice of hyperthermia, and a moderate operational temperature is used to increase the therapeutic effectiveness of conventional therapy without additional toxicity to normal tissues.

Pulsed Electromagnetic Field Enhances Doxorubicin-induced Reduction in the Viability of MCF-7 Breast Cancer Cells (맥동 전자기장 처리에 의한 독소루비신 유도 유방암 세포 생존저하 촉진)

  • Sung-Hun WOO;Yoon Suk KIM
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.56 no.1
    • /
    • pp.73-84
    • /
    • 2024
  • A pulsed electromagnetic field (PEMF) enhances the efficacy of several anticancer drugs. Doxorubicin (DOX) is an anticancer agent used to treat various malignancies, including breast cancer. This study examined whether a PEMF increases the anticancer effect of DOX on MCF-7 human breast cancer cells and elucidated the underlying mechanisms affected by PEMF stimulation in DOX-treated MCF-7 human breast cancer cells. A cotreatment with DOX and a PEMF potentiated the reduction in MCF-7 cell viability compared to the treatment with DOX alone. The PEMF elevated DOX-induced G1 arrest by affecting cyclin-dependent kinase 2 phosphorylation and the expression of G1 arrest-related molecules, including p53, p21, cyclin E2, and polo like kinase 1. In addition, PEMF increased the DOX-induced upregulation of proapoptotic proteins, such as Fas and Bcl-2-associated X, and the downregulation of antiapoptotic proteins, including myeloid leukemia 1 and survivin. PEMF promoted the DOX-induced activation of caspases-8, -9, and -7 and poly (adenosine diphosphate-ribose) polymerase cleavage in MCF-7 cells. In conclusion, PEMF enhances the anticancer activity in DOX-treated MCF-7 breast cancer cells by increasing G1 cell cycle arrest and caspase-dependent apoptosis. These findings highlight the potential use of a PEMF as an adjuvant treatment for DOX-based chemotherapy against breast cancer.