• Title/Summary/Keyword: ChemicalPolishing

Search Result 581, Processing Time 0.033 seconds

A Study on Chemical Mechanical Polishing using Pattern Density based Modeling (패턴 밀도를 고려한 Chemical Mechanical Polishing에 관한 연구)

  • 이재경;문원하;황호정
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.221-224
    • /
    • 2002
  • Recently, simulation of Chemical Mechanical Polis hing is becoming more important because Process parameters on the material removal rate are complicated. And pattern-depent effects are a key concern in CMP processes. In this paper, we have been studied the changes of pattern density vs. oxide thickness with Stine's simulation model. We also have estimated the effective density using optimal window size with density mask, and have made a study of the change of oxide thickness as a function of polishing time.

  • PDF

Oxide Planarization of Trench Structure using Chemical Mechanical Polishing(CMP) (기계화학적 연마를 이용한 트렌치 구조의 산화막 평탄화)

  • 김철복;김상용;서용진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.10
    • /
    • pp.838-843
    • /
    • 2002
  • Chemical mechanical polishing(CMP) process has been widely used to planarize dielectric layers, which can be applied to the integrated circuits for deep sub-micron technology. The reverse moat etch process has been used for the shallow trench isolation(STI)-chemical mechanical polishing(CMP) process with conventional low selectivity slurries. Thus, the process became more complex, and the defects were seriously increased. In this paper, we studied the direct STI-CMP process without reverse moat etch step using high selectivity slurry(HSS). As our experimental results show, it was possible to achieve a global planarization without the complicated reverse moat process, the STI-CMP process could be dramatically simplified, and the defect level was reduced. Therefore the throughput, yield, and stability in the ULSI semiconductor device fabrication could be greatly improved.

Hydrodynamic Pressure and Shear Stress in Chemical Mechanical Polishing (화학기계적연마 공정의 윤활역학적 압력 및 전단응력 분포 해석)

  • 조철호;박상신;안유민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.179-184
    • /
    • 2000
  • Chemical Mechanical Polishing (CMP) refers to a material removal process done by rubbing a work piece against a polishing pad under load in the presence of chemically active and abrasive containing slurry. CMP process is a combination of chemical dissolution and mechanical action. The mechanical action of CMP involves hydrodynamic behavior. The liquid slurry is trapped between the work piece and pad forming a hydrodynamic film. For the first step to understand material removal mechanism of the CMP process, the hydrodynamic analysis is done with semiconductor wafer. Three-dimensional Reynolds equation is applied to get pressure distribution of the slurry film. Shear stress distributions on the wafer surface are also analyzed

  • PDF

An Optimization of Tungsten Plug Chemical Mechanical Polishing(CMP) using the Different Sets of Slurry and Pad (슬러리와 패드변화에 따른 텅스텐 플러그 CMP 공정의 최적화)

  • 김상용;서용진;이우선;이강현;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.7
    • /
    • pp.568-574
    • /
    • 2000
  • We have been optimized tungsten(W) plug CMP(chemical mechanical polishing) characteristics using two different kinds of component of slurry and two different kinds of pad which have different hardness. The comparison of oxide film roughness on around W plug after polishing has been carried out. And W plug recess for consumable sets and dishing effect at dense area according to the rate of over-polishing has been investigated. Also the analysis of residue on surface after cleaning have been performed. As a experimental result we have concluded that the consumable set of slurry A and hard pad was good for W plug CMP process. After decreasing the rate of chemical reaction of silica slurry and adding two step buffering we could reduce the expanding of W plug void however we are still recognizing to need a more development for those kinds of CMP consumables.

  • PDF

Silicon/Pad Pressure Measurements During Chemical Mechanical Polishing

  • Danyluk, Steven;Ng, Gary;Yoon, In-Ho;Higgs, Fred;Zhou, Chun-Hong
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.433-434
    • /
    • 2002
  • Chemical mechanical polishing refers to a process by which silicon and partially-processed integrated circuits (IC's) built on silicon substrates are polished to produce planar surfaces for the continued manufacturing of IC's. Chemical mechanical polishing is done by pressing the silicon wafer, face down, onto a rotating platen that is covered by a rough polyurethane pad. During rotation, the pad is flooded with a slurry that contains nanoscale particles. The pad deforms and the roughness of the surface entrains the slurry into the interface. The asperities contact the wafer and the surface is polished in a three-body abrasion process. The contact of the wafer with the 'soft' pad produces a unique elastohydrodynamic situation in which a suction force is imposed at the interface. This added force is non-uniform and can be on the order of the applied pressure on the wafer. We have measured the magnitude and spatial distribution of this suction force. This force will be described within the context of a model of the sliding of hard surfaces on soft substrates.

  • PDF

A Study on the Effect of Pattern Density and it`s Modeling for ILD CMP (패턴 웨이퍼의 화학기계적 연마시 패턴 밀도의 영향과 모델링에 관한 연구)

  • Hong, Gi-Sik;Kim, Hyung-Jae;Jeong, Hae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.196-203
    • /
    • 2002
  • Generally, non-uniformity and removal rate are important factors on measurements of both wafer and die scale. In this study, we verify the effects of the pressure and relative velocity on the results of the chemical mechanical polishing and the effect of pattern density on inter layer dielectric chemical mechanical polishing of patterned wafer. We suggest an appropriate modeling equation, transformed from Preston\`s equations which was used in glass polishing, and simulate the removal rate of patterned wafer in chemical mechanical polishing. Results indicate that the pressure and relative velocity are dominant factors for the chemical mechanical polishing and pattern density effects on removal rate of pattern wafers in die scale. The modeling is well agreed to middle and low density structures of the die. Actually, the die used in Fab. was designed to have an appropriate density, therefore the modeling will be suitable for estimating the results of ILD CMP.

Nano-level mirror finishing for ELID ground surfsce using magnetic assisted polishing (자기연마를 이용한 ELID 연삭면의 나노경면연마)

  • Lee Y.C.;Kwak T.S.;Anzai M.;Ohmori H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.629-632
    • /
    • 2005
  • ELID(ELectrolytic In-process Dressing) grinding is an excellent technique for mirror grinding of various advanced metallic or nonmetallic materials. A polishing process is also required for elimination of scratches present on ELID grinded surfaces. MAP(Magnetic Assisted Polishing) has been used as a polishing method due to its high polishing efficiency and to its resulting in a superior surface quality. This study describes an effective fabrication method combining ELID and MAP of nano-precision mirror grinding for glass-lens molding mould, such as WC-Co, which are extensively used in precision tooling material. And for the optics glass-ceramic named Zerodure, which is extensively used in precision optics components too. The experimental results show that the combined method is very effective in reducing the time required for final polishing. The best surface roughness of the polished glass-ceramic was within 1.7nm Ra in this study.

  • PDF