• Title/Summary/Keyword: Chemical structure analysis

Search Result 1,786, Processing Time 0.034 seconds

Syntheses and Characterization of Cr(III)-Hydrogensalicylato and -Hydroxonitrophenolato Tetraaza Macrocyclic Complexes

  • Byun, Jong-Chul;Yoon, Chang-Hoon;Mun, Dae-Hun;Kim, Ki-Ju;Park, Yu-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.687-693
    • /
    • 2006
  • Chromium(III) complexes, cis-[Cr([14]-decane)$(HOC _6H _4COO) _2$]$ClO _4$ I and cis-[Cr([14]-decane)(OH) $(OC _6H _4NO _2)$]$ClO _4{\cdot}H _2O$ II ([14]-decane = rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-teraazacyclotetradecane) are synthesized and structurally characterized by a combination of elemental analysis, conductivity, IR and VIS spectroscopy, and X-ray crystallography. The complexes crystallizes in the monoclinic space groups, $C2 _1$/a in I and $P2 _1$/n in II. Analysis of the crystal structure of complex I reveals that central chromium(III) ion has a distorted octahedral coordination environment and two hydrogensalicylato ligands are unidentate to the chromium(III) ion via the carboxyl groups in the cis-position. For monomeric complex I the hydrogensalicylato coordination geometry is as follows: Cr-O(average) = 1.984(3) $\AA$;Cr-N range = 2.105(3)-2.141(4) $\AA$;C(24)-O(4) = 1.286(5) $\AA$;N(2)-Cr-N(4) (equatorial position) = 96.97(15)${^{\circ}}$; N(1)-Cr-N(3) (axial position) = 168.27(15)${^{\circ}}$; O(1)-Cr-O(4) = 85.70(13)${^{\circ}}$. The crystal structure of II has indicated that chromium(III) ion is six-coordinated by four secondary amines of the macrocycle, hydroxide anion and nitrophenolate anion.

A New Compound Isolation and Structure Analysis from Phellodendron Amurense Fruit Extract (황벽나무 열매 추출물로부터 신규 화합물의 분리 및 구조분석)

  • Kim, Young-Hee;Choi, Jung Eun;Hong, Jin-Young;Jo, Chang Wook;Lee, Jeung-Min;Kim, Soo Ji
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.269-275
    • /
    • 2013
  • Antifungal and insecticidal activity of Korean traditional medicinal plants was carried out to develop natural material for the development of organic cultural heritage conservation. As a result, Phellodendron amurense fruit was finally selected as a candidate of antifungal and insecticidal natural material. An novel active compound was purified from the ethylacetate fraction of Phellodendron amurense fruits using silica gel and Sephadex LH-20 column chromatography and PTLC. The compound was obtained as yellow oil form; UV ${\lambda}_{max}$(MeOH): 260 nm. The chemical structure of novel compound was determined as (4'-ethyl-2'-methylfuranyl)-6-methoxy-7-methylnona-2E,4E,6Z,8E-tetraenoic acid on the basis of various NMR experiments including $^1H$- and $^{13}C$-NMR, HMQC, HMBC and ESI-mass spectrum.

Dynamic Behavior of Regulatory Elements in the Hierarchical Regulatory Network of Various Carbon Sources-Grown Escherichia coli

  • Lee, Sung-Gun;Hwang, Kyu-Suk;Kim, Cheol-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.551-559
    • /
    • 2005
  • The recent rapid increase in genomic data related to many microorganisms and the development of computational tools to accurately analyze large amounts of data have enabled us to design several kinds of simulation approaches for the complex behaviors of cells. Among these approaches, dFBA (dynamic flux balance analysis), which utilizes FBA, differential equations, and regulatory events, has correctly predicted cellular behaviors under given environmental conditions. However, until now, dFBA has centered on substrate concentration, cell growth, and gene on/off, but a detailed hierarchical structure of a regulatory network has not been taken into account. The use of Boolean rules for regulatory events in dFBA has limited the representation of interactions between specific regulatory proteins and genes and the whole transcriptional regulation mechanism with environmental change. In this paper, we adopted the operon as the basic structure, constructed a hierarchical structure for a regulatory network with defined fundamental symbols, and introduced a weight between symbols in order to solve the above problems. Finally, the total control mechanism of regulatory elements (operons, genes, effectors, etc.) with time was simulated through the linkage of dFBA with regulatory network modeling. The lac operon, trp operon, and tna operon in the central metabolic network of E. coli were chosen as the basic models for control patterns. The suggested modeling method in this study can be adopted as a basic framework to describe other transcriptional regulations, and provide biologists and engineers with useful information on transcriptional regulation mechanisms under extracellular environmental change.

Intermolecular Hydrogen Bonding and Vibrational Analysis of N,N-Dimethylformamide Hexamer Cluster

  • Park, Sun-Kyung;Min, Kyung-Chul;Lee, Choong-Keun;Hong, Soon-Kang;Kim, Yun-Soo;Lee, Nam-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2595-2602
    • /
    • 2009
  • Hexamer cluster of N,N-dimethylformamide(DMF) based on the crystal structure was investigated for the equilibrium structure, the stabilization energies, and the vibrational properties in the density functional force field. The geometry (point group $C_i$) of fully optimized hexamer clustered DMF shows quite close similarity to the crystal structure weakly intermolecular hydrogen bonded each other. Stretching force constants for intermolecular hydrogen bonded methyl and formyl hydrogen atoms with nearby oxygen atom, methyl C–H${\cdots}$O and formyl C–H${\cdots}$O, were obtained in 0.055 $\sim$ 0.11 and $\sim$ 0.081 mdyn/$\AA$, respectively. In-plane bending force constants for hydrogen bonded methyl hydrogen atoms were in 0.25 $\sim$ 0.33, and for formyl hydrogen $\sim$ 0.55 mdynÅ. Torsion force constants through hydrogen bonding for methyl hydrogen atoms were in 0.038 $\sim$ 0.089, and for formyl hydrogen atom $\sim$ 0.095 mdynÅ. Calculated Raman and infrared spectral features of single and hexamer cluster represent well the experimental spectra of DMF obtained in the liquid state. Noncoincidence between IR and Raman frequency positions of stretching C=O, formyl C–H and other several modes was interpreted in terms of the intermolecular vibrational coupling in the condensed phase.

Effects of Pitch Softening Point-based on Soft Carbon Anode for Initial Efficiency and Rate Performance (피치계 소프트 카본 음극재 제조 시 피치의 연화점이 음극재 초기 효율 및 율속 특성에 미치는 영향)

  • Kim, Kyung Soo;Im, Ji Sun;Lee, Jong Dae;Kim, Ji Hong;Hwang, Jin Ung
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.331-336
    • /
    • 2019
  • In this study, required properties and optimized procedure conditions for the pitch based soft carbon anode of lithium ion battery was investigated for improving the initial efficiency and rate performance. Each petroleum residue was thermally treated at 360, 370, and $410^{\circ}C$ for 3 hours to synthesis a pitch and the corresponding pitch shows the softening point of 86, 98, and $152^{\circ}C$, respectively. The elemental analysis and thermal characteristics of the pitch were investigated by EA analysis and TGA. It was noted that the low H/C and improved thermal stability were obtained with the high softening point. The obtained pitch was carbonized at $1,200^{\circ}C$ for 1 hour to produce a soft carbon based anode. As a result of investigating the crystal structure by XRD analysis, it was found that the crystallinity of soft carbon increased with increasing the softening point. It was considered that relatively higher boiling components and decreases in the evaporation component resulted the components participation for cyclization during the heat treatment process. The soft carbon based anode with an improved crystallinity shows the enhanced initial efficiency and rate performance. The mechanism of both improvements was also discusssed based on the developed crystal structure of soft carbon based anode materials.

Introduction of Numerical Analysis Method for Calculation of Diffusion Property in Interlayer Water of Expansible Clay Mineral (팽창성 점토광물 내 층간수의 확산특성분석을 위한 수치해석학적 방법)

  • Choi, Jung-Hae;Chae, Byung-Gon;Chon, Chul-Min
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.211-220
    • /
    • 2012
  • The numerical modeling and simulation have been used increasingly as tools for examining and interpreting the bulk structure and properties of materials. The use of molecular dynamics (MD) simulations to model the structure of materials is now both widespread and reasonably well understood. In this research, we introduced the numerical method to calculate the physico-chemical properties such as a diffusion coefficient and a viscosity of clay mineral. In this research, a series of MD calculations were performed for clay mineral and clay-water systems, appropriate to a saturated deep geological setting. Then, by using homogenization analysis (HA), the diffusion coefficients are calculated for conditions of the spatial distribution of the water viscosity associated with some configuration of clay minerals. This result of numerical analysis is quite similar to the previous experimental results. It means that the introduced numerical method is very useful to calculate the physico-chemical properties of clay minerals under various environmental conditions.

Mainchain NMR Assignments and secondary structure prediction of the C-terminal domain of BldD, a developmental transcriptional regulator from Streptomyces coelicolor A3(2)

  • Kim, Jeong-Mok;Won, Hyung-Sik;Kang, Sa-Ouk
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.17 no.1
    • /
    • pp.59-66
    • /
    • 2013
  • BldD, a developmental transcription factor from Streptomyces coelicolor, is a homodimeric, DNA-binding protein with 167 amino acids in each subunit. Each monomer consists of two structurally distinct domains, the N-terminal domain (BldD-NTD) responsible for DNA-binding and dimerization and the C-terminal domain (BldD-CTD). In contrast to the BldD-NTD, of which crystal structure has been solved, the BldD-CTD has been characterized neither in structure nor in function. Thus, in terms of structural genomics, structural study of the BldD-CTD has been conducted in solution, and in the present work, mainchain NMR assignments of the recombinant BldD-CTD (residues 80-167 of BldD) could be achieved by a series of heteronuclear multidimensional NMR experiments on a [$^{13}C/^{15}N$]-enriched protein sample. Finally, the secondary structure prediction by CSI and TALOS+ analysis using the assigned chemical shifts data identified a ${\beta}-{\alpha}-{\alpha}-{\beta}-{\alpha}-{\alpha}-{\alpha}$ topology of the domain. The results will provide the most fundamental data for more detailed approach to the atomic structure of the BldD-CTD, which would be essential for entire understanding of the molecular function of BldD.

Evaluation of Characteristics for Stress Distribution on Cylindrical Beam Structure by Deformation and Restoration Process (변형 및 복원공정에 따른 실린더 형상 구조물의 응력분포 특성)

  • Park Chi-Yong;Kim Jin-Weon;Boo Myung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.132-138
    • /
    • 2005
  • In heavy industrial fields such as power plant and chemical plant, it is often necessary to restore damaged part of large machinery and structure which is installed in the hazard working place. In this paper, to estimate stress distribution which occurs during damage and restoration of cylindrical beam structure, the finite element technique has been used. A finite element model was verified by experiment for non deformed cylindrical beam structure. The displacements and elastic recovery have an excellent agreement between experiment and finite element analysis. The variations of stress distribution on deformation and restoration procedure for surfaces have been examined. The maximum von Mises stress appears in the surface for deformation and restoration procedure. In deformation procedure, the maximum stress occurs in the vicinity of support body. In restoration procedure, the maximum stress occurs in the vicinity of the fixing body. The fixing body allows avoiding stress concentration in adjacent support structure boundary.

Synthesis of Modified Polyesters Containing Triphosphorus for Flame-Retardant Coatings (난연도료용 트리포스포러스 함유 변성폴리에스테르의 합성)

  • Park, Hong-Soo;Yoo, Gyu-Yeol;Kim, Ji-Hyun;Kim, Young-Geun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.287-295
    • /
    • 2007
  • Three phosphorus functional groups were introduced in one structural unit of polymer backbone to enhance the flame retardancy of PU coatings. In the first step, we synthesized tetramethylene bis(orthophosphate) (TBOP) that contained two phosphorus functional groups in one structural unit. In the next step, we synthesized modified polyesters (ATBTP-10C, -20C, -30C) that contained triphosphorus group using TBOP, 1,4-butanediol, trimethylolpropane, adipic acid, and another functional monomer, phenylphosphonic acid (PPA). The amount of PPA in ATBTPs was adjusted from 10 wt% to 30 wt%. The structure and characteristics of ATBTPs were examined using FT-IR, NMR, GPC, and TGA analysis. From the thermo-behavior test of diphosphorus modified polyester (ATBT) and ATBTPs, the afterglow of ATBT, ATBTP-10C, ATBTP-20C, and ATBTP-30C were 24.7, 27.1, 29.0, and 31.7%, respectively. It was found from this result that the afterglow increased with the amount of PPA component.

Isolation and Identification of an Unauthorized Sildenafil Analogue in a Commercial Functional Food (시판 기능성식품으로부터의 실데나필 유도체 부정첨가물질의 분리 및 구조규명)

  • Baek, Du-Jong
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.4
    • /
    • pp.443-446
    • /
    • 2010
  • HPLC analysis of a commercial herb drink marketed as a functional food revealed to contain an unauthorized substance similar to sildenafil, the active ingredient of the prescription drug Viagra$^{(R)}$ approved for the treatment of male erectile dysfunction. In order to identify the illegal additive, the herb drink was extracted with methylene chloride, and the extract was purified further using semipreparative HPLC. The chemical structure of the isolated substance was elucidated based on IR, LC/MS-ESI, and NMR spectroscopy, which showed the characteristics similar to sildenafil with minor modification. The only difference was the substitution of the methylpiperazine moiety of sildenafil to the hydroxyethylpiperazine group of the illegal additive.