• Title/Summary/Keyword: Chemical stability difference

Search Result 135, Processing Time 0.025 seconds

A Study on Alkali ion-Sensitivity of $Si_{x}O_{y}N_{z}$ Fabricated by Low Pressure Chemical Vapor Deposition (저압화학기상 성장법으로 제작된 $Si_{x}O_{y}N_{z}$의 알칼리이온 감지성에 관한 연구)

  • Shin, P.K.;Lee, D.C.
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.200-206
    • /
    • 1997
  • Using $SiCl_{2}H_{2}$, $NH_{3}$ and $N_{2}O$, we have fabricated silicon oxynitride ($Si_{x}O_{y}N_{z}$) layers on thermally oxidized silicon wafer by low pressure chemical vapor deposition. Three different compositions were achieved by controlling gas flow ratios($NH_{3}/N_{2}O$)) to 0.2, 0.5 and 2 with fixed gas flow of $SiCl_{2}H_{2}$. Ellipsometry and high frequency capacitance-voltage(HFCV) measurements were adapted to investigate the difference of the refractive index, dielectric constant, and composition, respectively. Regardless of nitride content, silicon oxynitrides had similar stability to silicon nitrides. The relative standing of alkali ion sensitivity in silicon oxynitride layers was influenced by nitride content. The better alkali ion-sensitivity was achieved by increasing oxide content in bulk of silicon oxynitrides.

  • PDF

Full Geometry Optimizations of Bond-Stretch Isomers of C202+ Fullerene Dication by the Hybrid Density Functional B3LYP Methods

  • Lee, Ji-Hyun;Lee, Chang-Hoon;Park, Sung-S.;Lee, Kee-Hag
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.277-280
    • /
    • 2011
  • We studied the relative stability and atomic structure of five $C_{20}^{2+}$ isomers obtained by two-electron ionization of a $C_{20}$ cage (the smallest fullerene). All the isomers are bond-stretch isomers, i.e., they differ in bond length. In particular, in one of the isomers with Ih symmetry, all the bond lengths are equal. Full geometry optimizations of the dipositive ion $C_{20}^{2+}$ were performed using the hybrid density functional (B3LYP/6-31G(d)) methods. All isomers were found to be true minima by frequency analysis at the level of B3LYP/6-31G(d) under the reinforced tight convergence criterion and a pruned (99,590) grid. The zero-point correction energy for the cage bond-stretch isomers was in the increasing order $D_{2h}<C_{2h}<C_2<T_h<I_h$ of $C_{20}^{2+}$. The energy difference among the isomers of cage dipositive ions was less than that among neutral cage isomers. Our results suggest that these isomers show bond-stretch isomerism and that they have an identical spin state and an identical potential energy curve. Although the predominant electronic configurations of the isomers are similar, the frontier orbital characteristics are different, implying that we could anticipate an entirely different set of characteristic chemical reactions for each type of HOMO and LUMO.

Changes of the phsico-Chemical Characteristics of oils treated by the ${\gamma}$-ray irradiation (I) -The Extracted soybean oil- (방사선 조사선량에 따른 유지의 이화학적 성질변화 (I))

  • 임국이
    • Journal of the Korean Home Economics Association
    • /
    • v.30 no.4
    • /
    • pp.77-88
    • /
    • 1992
  • To investigate the oxidative stabilities of the ${\gamma}$-ray irradiated soybean during storage and heating and some physico-chemical characteristics of soybean and the extracted soybean oil (SBO) with/without the ${\gamma}$-ray irradiation were determined. The ${\gamma}$-ray level use in irradiation for soybean were 2.5, 5.0 and 10.0 KGY respectively and Acid Value, Peroxide Value, Conjugated Diene Value, Composed Fatty Acids amounts, and Trans Fatty Acid occurrence were determined for all samples, which were incubated at 45$\pm$1$^{\circ}C$ for 25 days heated at 180$\pm$1$^{\circ}C$ for 30 hours. And these values of the ${\gamma}$-ray treated samples were compared to those of nontreated samples. The results were obtained as follows : 1. According to the increased level of the ${\gamma}$-ray irradiation, there was little difference in Dielectric Constant, Viscosity, and the Induction Period by Rancimat. But, in case of 5.0 KGY, oxidative stability was increased more twice than that of non-irradiation. In the quantity of fatty Acids composition of the extracted soybean oil irradiated with 10.0 KGY, palmitic, oleic and linoleic acids were less increased thanb those of non-irradiation, while stearic, linolenic acids were decreased. In the case of 2.5 KGY irradiation, stearic and oleic acids were increased. 2. The Acid Value of SBO according to the ${\gamma}$-ray irradiation level was almost not change, but was 0.1 lower than that of non-irradiation during incubation (45$\pm$1$^{\circ}C$). The Peroxide Value of SBO with the ${\gamma}$-ray irradiation, was very lower than that of non-irradiation, but its effect on oxidative stability was better of SBO treated with 5.0 KGY and 10.0 KGY. In the Fatty Acids composition of SBO, palmitic, stearic, oleic acids were increased, while linoleic, linolenic acids were decreased during incubation(45$\pm$1$^{\circ}C$). This tendency was more obvious due to the ${\gamma}$-ray level. While heating(180$\pm$1$^{\circ}C$), the Acid Value of SBO treated with the ${\gamma}$-ray irradiation was decreased, the Acid Value of SBO irradiated with 2.5 KGY was the lowest. Also the peroxide Values of SBO treated with 5.0 KGY, 10.0 KGY were very lower than that of non-irradiation. Conjugated Diene Value of SBO was almost unchanged according to the ${\gamma}$-level and heating time. 3. When the methyl linoleate was irradiated with the ${\gamma}$-ray, the Trans Fatty Acid was little produced. In case of SBO with non-irradiation, the trans C18:1 was occured about 6.5~7.9%, but trans C18:2 and C18:3 were not shown, while SBO irradiated with the ${\gamma}$-ray 2.5, 5.0, 10.0 KGY, trans C18:3 and C18:2 amount in SBO were increased according to heating time, but trans C18:3 was little occured. As these results, the effects of the ${\gamma}$-ray irradiation to oil containing food were to cut down the energy for food storage and to increase oxdative stability during storge. And also it was shown to be the best that 10.0 KGY of the ${\gamma}$-ray irradiation would be applied to soybean.

  • PDF

Effect of Xylanase Pre-and Post-Treatment on oxygen Bleaching of Oak Kraft Pulp

  • Kim, Dong-Ho;Paik, Ki-Hyon
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11a
    • /
    • pp.194-204
    • /
    • 1999
  • The use of genetically cloned xylanase acquired from Bacillus strearthermophillus improves bleachability for oak kraft pulps. Combination of xylanase(X). oxygen(O), ozone(Z). peroxide(P), alkaline extraction(Eo. Eop), and chlorination(C/D, D) have been tested in a variety of bleaching sequences. The effectiveness of xylanase pre-treatment(XO) and post-treatment(OX) in oxygen bleaching is mainly compared. With xylanase treatment the brightness increase by 1.5-2.1% ISO in OZEP, OZEoP, OZEopP and OPZP sequences. There is only numerically difference of brightness gains between OX and XO sequences. With xylanase treatment chemical requirements for bleaching decrease by 42.6-48.6% in OC/DEoD sequence and 47.9-54.7% as active chlorine in OC/DEopD sequence at the same brightness. the reduction of bleaching chemicals is higher in XO sequence than those in OX sequence. Following xylanase treatment the viscosity increases from 11.7-12.0 mPa·s to 12.4-13.5 mPa·s and the brightness stability is considerably improved however the difference of effectiveness between XO and OX sequence is not present. Compared to tensile index vs tear index, the physical properties are similar for TCF bleaching sequences with and without xylanase treatments. However in OC/DEoD and OC/DEopD sequences the physical properties decrease with xylanase treatment. There is no difference in the physical properties between XO and OX sequences. COD, BOD and color of bleaching effluents increase slightly with xylanase treatment, however the discharge of COD end-load into environmental impact decrease.

  • PDF

Principal Discriminant Variate (PDV) Method for Classification of Multicollinear Data: Application to Diagnosis of Mastitic Cows Using Near-Infrared Spectra of Plasma Samples

  • Jiang, Jian-Hui;Tsenkova, Roumiana;Yu, Ru-Qin;Ozaki, Yukihiro
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1244-1244
    • /
    • 2001
  • In linear discriminant analysis there are two important properties concerning the effectiveness of discriminant function modeling. The first is the separability of the discriminant function for different classes. The separability reaches its optimum by maximizing the ratio of between-class to within-class variance. The second is the stability of the discriminant function against noises present in the measurement variables. One can optimize the stability by exploring the discriminant variates in a principal variation subspace, i. e., the directions that account for a majority of the total variation of the data. An unstable discriminant function will exhibit inflated variance in the prediction of future unclassified objects, exposed to a significantly increased risk of erroneous prediction. Therefore, an ideal discriminant function should not only separate different classes with a minimum misclassification rate for the training set, but also possess a good stability such that the prediction variance for unclassified objects can be as small as possible. In other words, an optimal classifier should find a balance between the separability and the stability. This is of special significance for multivariate spectroscopy-based classification where multicollinearity always leads to discriminant directions located in low-spread subspaces. A new regularized discriminant analysis technique, the principal discriminant variate (PDV) method, has been developed for handling effectively multicollinear data commonly encountered in multivariate spectroscopy-based classification. The motivation behind this method is to seek a sequence of discriminant directions that not only optimize the separability between different classes, but also account for a maximized variation present in the data. Three different formulations for the PDV methods are suggested, and an effective computing procedure is proposed for a PDV method. Near-infrared (NIR) spectra of blood plasma samples from mastitic and healthy cows have been used to evaluate the behavior of the PDV method in comparison with principal component analysis (PCA), discriminant partial least squares (DPLS), soft independent modeling of class analogies (SIMCA) and Fisher linear discriminant analysis (FLDA). Results obtained demonstrate that the PDV method exhibits improved stability in prediction without significant loss of separability. The NIR spectra of blood plasma samples from mastitic and healthy cows are clearly discriminated between by the PDV method. Moreover, the proposed method provides superior performance to PCA, DPLS, SIMCA and FLDA, indicating that PDV is a promising tool in discriminant analysis of spectra-characterized samples with only small compositional difference, thereby providing a useful means for spectroscopy-based clinic applications.

  • PDF

PRINCIPAL DISCRIMINANT VARIATE (PDV) METHOD FOR CLASSIFICATION OF MULTICOLLINEAR DATA WITH APPLICATION TO NEAR-INFRARED SPECTRA OF COW PLASMA SAMPLES

  • Jiang, Jian-Hui;Yuqing Wu;Yu, Ru-Qin;Yukihiro Ozaki
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1042-1042
    • /
    • 2001
  • In linear discriminant analysis there are two important properties concerning the effectiveness of discriminant function modeling. The first is the separability of the discriminant function for different classes. The separability reaches its optimum by maximizing the ratio of between-class to within-class variance. The second is the stability of the discriminant function against noises present in the measurement variables. One can optimize the stability by exploring the discriminant variates in a principal variation subspace, i. e., the directions that account for a majority of the total variation of the data. An unstable discriminant function will exhibit inflated variance in the prediction of future unclassified objects, exposed to a significantly increased risk of erroneous prediction. Therefore, an ideal discriminant function should not only separate different classes with a minimum misclassification rate for the training set, but also possess a good stability such that the prediction variance for unclassified objects can be as small as possible. In other words, an optimal classifier should find a balance between the separability and the stability. This is of special significance for multivariate spectroscopy-based classification where multicollinearity always leads to discriminant directions located in low-spread subspaces. A new regularized discriminant analysis technique, the principal discriminant variate (PDV) method, has been developed for handling effectively multicollinear data commonly encountered in multivariate spectroscopy-based classification. The motivation behind this method is to seek a sequence of discriminant directions that not only optimize the separability between different classes, but also account for a maximized variation present in the data. Three different formulations for the PDV methods are suggested, and an effective computing procedure is proposed for a PDV method. Near-infrared (NIR) spectra of blood plasma samples from daily monitoring of two Japanese cows have been used to evaluate the behavior of the PDV method in comparison with principal component analysis (PCA), discriminant partial least squares (DPLS), soft independent modeling of class analogies (SIMCA) and Fisher linear discriminant analysis (FLDA). Results obtained demonstrate that the PDV method exhibits improved stability in prediction without significant loss of separability. The NIR spectra of blood plasma samples from two cows are clearly discriminated between by the PDV method. Moreover, the proposed method provides superior performance to PCA, DPLS, SIMCA md FLDA, indicating that PDV is a promising tool in discriminant analysis of spectra-characterized samples with only small compositional difference.

  • PDF

THE EFFECT OF IMMERSION DISINFECTION ON THE DIMENSIONAL STABILITY OF RUBBER IMPRESSION MATERIALS (침적 소독이 고무 인상재의 크기 안정성에 미치는 영향)

  • Min, Geun-Nam;Vang, Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.3
    • /
    • pp.496-505
    • /
    • 1998
  • The purpose of this study was to evalute the effect of immersion disinfection on the dimensional stability of rubber impression materials. The metallic master model was made in order to simulate the intraoral arch form. Impressions were made from four impression materials (Exaflex, Extrude, Reprosil, Impregum-F) and immersed in three disinfectant solutions (Wydex, Vi-Pon, Potadine). Casts from the impressions were measured according to the interpreparation distance. The A-B and The B-D abutment distance were compared with the control group and disinfected groups. The results were as follows; 1. The measurements of the stone cast increased relative to the master model and there was a significant difference (P<0.05). 2. The relative dimensional change of the stone cast as compared with master model ranged from 0.10% to 0.56% in the A-B distance and ranged from 0.04% to 0.27% in the B-D distance. 3. The dimensional change of the disinfected groups as compared with the control group was significantly different in the three impression materials except for Impregum-F (P<0.05). 4. The relative dimensional change of the disinfected groups compared with the control group ranged from 0% to 0.20% in the A-B distance and ranged from -0.09% to 0.11% in the B-D distance. These results suggest that immersion disinfection of rubber impression materials by chemical disinfectants causes very small dimensional change and the change is clinically acceptable for prothesis fabrication

  • PDF

Evaluation on the Phase-Change Properties in W-doped Ge8Sb2Te11 Thin Films for Amorphous-to-Crystalline Reversible Phase-Change Device (비정질-결정질 가역적 상변환 소자용 Ge8Sb2Te11 박막의 W 도핑에 따른 상변환 특성 평가)

  • Park, Cheol-Jin;Yeo, Jong-Bin;Kong, Heon;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.3
    • /
    • pp.133-138
    • /
    • 2017
  • We evaluated the structural, electrical and optical properties of tungsten (W)-doped $Ge_8Sb_2Te_{11}$ thin films. In a previous work, GeSbTe alloys were doped with different materials in an attempt to improve thermal stability. 200 mm thick $Ge_8Sb_2Te_{11}$ and W-doped $Ge_8Sb_2Te_{11}$ films were deposited on p-type Si (100) and glass substrates using a magnetron co-sputtering system at room temperature. The fabricated films were annealed in a furnace in the $0{\sim}400^{\circ}C$ temperature range. The structural properties were analyzed using X-ray diffraction (X'pert PRO, Phillips). The results showed increased crystallization temperature ($T_c$) leading to thermal stability in the amorphous state. The optical properties were analyzed using an UV-Vis-IR spectrophotometer (Shimadzu, U-3501, range : 300~3,000 nm). The results showed an increase in the crystalline material optical energy band gap ($E_{op}$) and an increase in the $E_{op}$ difference (${\Delta}E_{op}$). This is a good effect to reduce memory device noise. The electrical properties were analyzed using a 4-point probe (CNT-series). This showed increased sheet resistance ($R_s$), which reduces programming current in the memory device.

Preparation and Chrominance of Metal Oxide Coated Titania/Mica Pearlescent Pigment (금속산화물이 코팅된 마이카 티타니아 진주광택 안료의 제조 및 색차변화)

  • Lee, Kwan-Sik;Kang, Kuk-Hyoun;Lee, Jin-Hee;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.233-243
    • /
    • 2013
  • The inorganic pearlescent pigment have high physical and chemical stability, thus it is used in a variety field, which has better light stability, solvent resistance and thermostability. In this paper, we were synthesized the pearlescent pigment for cosmetics which was coated cobalt chloride for base of blue color metal oxide on mica titania substrate using hydrothermal synthesis method. To complement the color of the pigment by cobalt, pearl pigment were coated by different metal salt and cobalt ratio, to implement a variety of color value, depending on the kind of metal salts were synthesized. Synthesized pearlescent pigments appear various color as kind of added metal salt precursor and molar ration of cobalt and other metals. We controlled coating and color by composition of metal salt and type of metal salts, and that confirm the pigment characteristics of color changes through the analysis of color difference meter. Synthesized pigment was characterized by SPM, SEM, XRD, and EDS.

Characteristics of Cu-Doped Ge8Sb2Te11 Thin Films for PRAM (PRAM용 Cu-도핑된 Ge8Sb2Te11 박막의 특성)

  • Kim, Yeong-Mi;Kong, Heon;Kim, Byung-Cheul;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.376-381
    • /
    • 2019
  • In this work, we evaluated the structural, electrical and optical properties of $Ge_8Sb_2Te_{11}$ and Cu-doped $Ge_8Sb_2Te_{11}$ thin films prepared by rf-magnetron reactive sputtering. The 200-nm-thick deposited films were annealed in a range of $100{\sim}400^{\circ}C$ using a furnace in an $N_2$ atmosphere. The amorphous-to-crystalline phase changes of the thin films were investigated by X-ray diffraction (XRD), UV-Vis-IR spectrophotometry, a 4-point probe, and a source meter. A one-step phase transformation from amorphous to face-centered-cubic (fcc) and an increase of the crystallization temperature ($T_c$) was observed in the Cu-doped film, which indicates an enhanced thermal stability in the amorphous state. The difference in the optical energy band gap ($E_{op}$) between the amorphous and crystalline phases was relatively large, approximately 0.38~0.41 eV, which is beneficial for reducing the noise in the memory devices. The sheet resistance($R_s$) of the amorphous phase in the Cu-doped film was about 1.5 orders larger than that in undoped film. A large $R_s$ in the amorphous phase will reduce the programming current in the memory device. An increase of threshold voltage ($V_{th}$) was seen in the Cu-doped film, which implied a high thermal efficiency. This suggests that the Cu-doped $Ge_8Sb_2Te_{11}$ thin film is a good candidate for PRAM.