• Title/Summary/Keyword: Chemical hypoxia

Search Result 51, Processing Time 0.03 seconds

Structure and Biological Activity of K(H2O)L (L = 5,7-Dihydroxy-6,4'-dimethoxyisoflavone-3'-sulfonate)

  • Guo, Ya-Ning;Zhang, Xue-Ling;Zhang, Zun-Ting
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1289-1292
    • /
    • 2006
  • Potassium(I) with 5,7-dihydroxy-6,4'-dimethoxyisoflavone-3'-sulfonate (L) assembles to K($H_2O$)L (L = 5,7-dihydroxy-6,4'-dimethoxyisoflavone-3'-sulfonate). It was characterized by single-crystal X-ray diffraction, element analysis, IR and $^1H$ NMR spectroscopy. It crystallizes in the monoclinic space group $P2_1$/n and reveals a seven-coordinate complex. Polyhedra potassium chains, C-H${\cdot}{\cdot}{\cdot}\pi$ and C-H${\cdot}{\cdot}{\cdot}$O and O-H${\cdot}{\cdot}{\cdot}$O hydrogen bonds lead K($H_2O$)L to a three-dimensional network structure. The biological activity of resistance to hypoxia was tested, and the results showed that the biological activity of resistance to hypoxia of K($H_2O$)L is as good as that of its precursor, irisolidone.

The Neuroprotective Effects of Carnosine in Early Stage of Focal Ischemia Rodent Model

  • Park, Hui-Seung;Han, Kyung-Hoon;Shin, Jeoung-A;Park, Joo-Hyun;Song, Kwan-Young;Kim, Doh-Hee
    • Journal of Korean Neurosurgical Society
    • /
    • v.55 no.3
    • /
    • pp.125-130
    • /
    • 2014
  • Objective : This study was conducted to elucidate neuroprotective effect of carnosine in early stage of stroke. Methods : Early stage of rodent stroke model and neuroblastoma chemical hypoxia model was established by middle cerebral artery occlusion and antimycin A. Neuroprotective effect of carnosine was investigated with 100, 250, and 500 mg of carnosine treatment. And antioxidant expression was analyzed by enzyme linked immunosorbent assay (ELISA) and western blot in brain and blood. Results : Intraperitoneal injection of 500 mg carnosine induced significant decrease of infarct volume and expansion of penumbra (p<0.05). The expression of superoxide dismutase (SOD) showed significant increase than in saline group in blood and brain (p<0.05). In the analysis of chemical hypoxia, carnosine induced increase of neuronal cell viability and decrease of reactive oxygen species (ROS) production. Conclusion : Carnosine has neuroprotective property which was related to antioxidant capacity in early stage of stroke. And, the oxidative stress should be considered one of major factor in early ischemic stroke.

The hypoxia regulation on CYP4501Al expression

  • Kim, Ji E.;Yhun Y. Sheen
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.140-140
    • /
    • 1998
  • The aim of this study was to find out the effect of hypoxic condition on the regulation of cyplal gene expression. pcyplal-Luc construct was cloned and transfected into Hepa I cells. When Hepa-I cells containing pcyplal-Luc were treated by DFO (desferrioxamine) which is iron-chelating agent, the stimulatory effect of luciferase by TCDD was decreased. This inhibitory effect of desferrioxamine on the luciferase activity was dose dependent and abolished by concomitant treatment with N$\^$G/-nitro-ι-arginine. And when cobalt chloride which is known as a hypoxia inducing chemical was administrated, the stimulatory effect of luciferase by TCDD was also decreased. This inhibitory effect of cobalt chloride on the luciferase activity was dose dependent and abolished by concomitant treatment with N$\^$G/-nitro-ι-arginine. These data showed that hypoxic condition down regulates cyplal gene expression and this might be through nitric oxide action.

  • PDF

Enhanced Chondrogenic Differentiation of Human Adipose-derived Stem Cells with Inverse Opal Scaffolds (역오팔 구조 지지체를 이용한 인간 지방 유래 줄기 세포의 연골 분화 촉진)

  • Bhang, Suk Ho;Yu, Taekyung
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.727-732
    • /
    • 2013
  • In this report, we present an inverse opal scaffold that can enhance the chondrogenic differentiation of human adipose-derived stem cells (hADSCs) without drug, gene, or cytokine supplement. Inverse opal scaffolds based on poly(D,L-lactide-co-glycolide) were formed with uniform $200{\mu}m$ pores. Due to uniform pore sizes and well-controlled interconnectivity of inverse opal scaffold, hADSCs were allowed to distribute homogeneously throughout the scaffolds. As a result, high cell density culture with scaffold was possible. Since the hADSCs cultured in inverse opal scaffolds were subjected to limited supplies of oxygen and nutrients, these cells were naturally preconditioned to a hypoxic environment that stimulated the up-regulation of hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$). As a result, apoptotic activity of hADSCs until 3 weeks after initial cell seeding was significantly reduced and chondrogenic differentiation related molecular signal cascades were up regulated (transforming growth factor-beta, phosphorylated AKT, and phosphorylated p38 expression). In contrast, hADSCs cultured with small and non-uniform porous scaffolds showed significantly increased apoptotic activity with decreased chondrogenic differentiation. Taken together, inverse opal scaffold could potentially be used as an effective tool for improving chondrogenesis using stem cells.

Synthesis of ginsenoside Rb1-imprinted magnetic polymer nanoparticles for the extraction and cellular delivery of therapeutic ginsenosides

  • Liu, Kai-Hsi;Lin, Hung-Yin;Thomas, James L.;Shih, Yuan-Pin;Yang, Zhuan-Yi;Chen, Jen-Tsung;Lee, Mei-Hwa
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.621-627
    • /
    • 2022
  • Background: Panax ginseng (ginseng) is a traditional medicine that is reported to have cardioprotective effects; ginsenosides are the major bioactive compounds in the ginseng root. Methods: Magnetic molecularly imprinted polymer (MMIP) nanoparticles might be useful for both the extraction of the targeted (imprinted) molecules, and for the delivery of those molecules to cells. In this work, plant growth regulators were used to enhance the adventitious rooting of ginseng root callus; imprinted polymeric particles were synthesized for the extraction of ginsenoside Rb1 from root extracts, and then employed for subsequent particle-mediated delivery to cardiomyocytes to mitigate hypoxia/reoxygenation injury. Results: These synthesized composite nanoparticles were first characterized by their specific surface area, adsorption capacity, and magnetization, and then used for the extraction of ginsenoside Rb1 from a crude extract of ginseng roots. The ginsenoside-loaded MMIPs were then shown to have protective effects on mitochondrial membrane potential and cellular viability for H9c2 cells treated with CoCl2 to mimic hypoxia injury. The protective effect of the ginsenosides was assessed by staining with JC-1 dye to monitor the mitochondrial membrane potential. Conclusion: MMIPs can play a dual role in both the extraction and cellular delivery of therapeutic ginsenosides.

Effects of Antioxidant Tempol on Systematic Inflammation and Endothelial Apoptosis in Emphysematous Rats Exposed to Intermittent Hypoxia

  • Zhao, Haiyan;Zhao, Yaping;Li, Xin;Xu, Leiqian;Jiang, Fangxin;Hou, Wanju;Dong, Lixia;Cao, Jie
    • Yonsei Medical Journal
    • /
    • v.59 no.9
    • /
    • pp.1079-1087
    • /
    • 2018
  • Purpose: Obstructive sleep apnea and chronic obstructive pulmonary disease are independent risk factors of cardiovascular disease (CVD), and their coexistence is known as overlap syndrome (OS). Endothelial dysfunction is the initial stage of CVD; however, underlying mechanisms linking OS and CVD are not well understood. The aim of this study was to explore whether OS can lead to more severe inflammation and endothelial apoptosis by promoting endothelial dysfunction, and to assess the intervention effects of antioxidant tempol. Materials and Methods: Male Wistar rats (n=66) were exposed to normal oxygen [normal control (NC) group], intermittent hypoxia (IH group), cigarette smoke (CH group), as well as cigarette smoke and IH (OS group). Tempol intervention was assessed in OS group treated with tempol (OST group) or NaCl (OSN group). After an 8-week challenge, lung tissues, serum, and fresh blood were harvested for analysis of endothelial markers and apoptosis. Results: The levels of intracellular adhesion molecule-1, vascular cellular adhesion molecule-1, and apoptosis in circulating epithelial cells were the highest in OS group and the lowest in NC group. These levels were all greater in IH group than in CH group, and were lower in OST group than in OS and OSN groups (all p<0.001). Conclusion: Synergistic effects of IH with cigarette smoke-induced emphysema produce a greater inflammatory status and endothelial apoptosis. OS-related inflammation and endothelial cell apoptosis may play important roles in promoting cardiovascular dysfunction, and antioxidant tempol could achieve a partial protective effect.

Effect of glucose level on chemical hypoxia- and hydrogen peroxide-induced chemokine expression in human glioblastoma cell lines

  • Jung, Yieun;Ahn, So-Hee;Park, Sang Hui;Choi, Youn-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.5
    • /
    • pp.509-518
    • /
    • 2017
  • Glioblastoma multiforme (GBM) is the most common primary intracranial tumor in adults and has poor prognosis. The GBM-specific tumor microenvironment (TME) plays a crucial role in tumor progression, immune escape, local invasion, and metastasis of GBM. Here, we demonstrate that hypoxia, reactive oxygen species (ROS), and differential concentration of glucose influence the expression of cytokines and chemokines, such as IL-6, IL-8, and IP-10, in human glial cell lines. Treatment with cobalt chloride ($CoCl_2$) and hydrogen peroxide ($H_2O_2$) significantly increased the expression levels of IL-6, IL-8, and IP-10 in a dose-dependent manner in CRT-MG and U251-MG astroglioma cells, but not in microglia cells. However, we found strikingly different patterns of expression of cytokines and chemokines between $H_2O_2$-treated CRT-MG cells cultured in low- and high-glucose medium. These results suggest that astroglioma and microglia cells exhibit distinct patterns of cytokine and chemokine expression in response to $CoCl_2$ and $H_2O_2$ treatment, and different concentrations of glucose influence this expression under either hypoxic or oxidant-enriched conditions.

A report on the mass summer mortalities of the farmed Pacific oysters, Crassostrea gigas and Bay scallops Argopecten irradians in the local waters of Goseong Bay, Korea

  • Han, Jong Cheol;Jo, Qtae;Park, Young Cheol;Park, Tae Gyu;Lee, Deok Chan;Cho, Kee-Chae
    • The Korean Journal of Malacology
    • /
    • v.29 no.3
    • /
    • pp.239-244
    • /
    • 2013
  • Mass mortalities of farmed shellfish, mostly in summer season, thus named mass summer mortalities, have been a global issue in shellfish aquaculture. The 2013 mass summer mortalities in the confined waters of Goseong Bay, Goseong, Korea were quite a unique and intensive for two farmed species, the Pacific oysters, Crassostrea gigas, and bay scallops, Argopecten irradians. The mortalities were progressive from the bottom of the suspended oysters and caged scallops in the waters, reaching up to 80% for the oyster and 95% for the scallop in about 20 days after the first occurrence, early August, 2013. We monitored a wide range of environmental factors, including water temperature, dissolved oxygen (DO), salinity, turbidity, acidity (pH), organic and inorganic matters, chemical oxygen demand (COD), suspected pathogenic agent, and phytoplankton composition throughout the water column where the two species were suspended or caged. Our survey concluded that the hypoxia or anoxia might be a major cause of the mortalities. Here, we detailed the mortalities and ways to arrive at the conclusion.

Effect of Juglans sinensis Dode extract on chemical hypoxia-induced cell injury in human glioma cells (호도약침(胡桃藥鍼)이 인간(人間)의 신경교종 세포(細胞)에 유발된 저산소증(低酸素症)에 대한 방어효과(防禦效果))

  • Youn, Hyoun-min;Heo, Jae-yeong;Ahn, Chang-beohm
    • Journal of Acupuncture Research
    • /
    • v.20 no.2
    • /
    • pp.173-183
    • /
    • 2003
  • 이 논문(論文)은 활성 산소(ROS)의 작용(作用)을 규명하고 호도약침액(胡桃藥鍼液)이 인간의 신경교종 세포인 A172에서 화학적(化學的) 저산소증(低酸素症)으로 유발된 세포 사멸에 대해 효능이 있는지를 연구(硏究)한 것이다. 화학적(化學的) 저산소증(低酸素症)은 세포내 미토콘드리아의 전자 수송을 방해하는 antimycin A를 가진 배양세포에 의해 유발(誘發)하였다. 화학적(化學的) 저산소증(低酸素症)에 노출된 세포(細胞)는 시간과 그 양에 따라서 세포 사멸의 결과(結果)가 다르게 나타난다. 화학적 저산소증에 의해서 ROS의 생산이 증가하는데 이것은 $H_2O_2$ 소거(消去) Catalase(과산화수소를 물과 산소로 분해하는 효소)에 의해 방지(防止)된다. Catalase는 화학적 저산소증에 의해 유발(誘發)된 세포 사멸을 방지하는데 비해 DMTU는 효과적이지 않다. 지질(脂質)에 녹는 산화방지제 DPPD와 물에 녹는 산화방지제 Trolox는 세포사멸을 방지하는데 효과(效果)가 없다. 호도약침액(胡桃藥鍼液)은 그 양(量)에 의존적으로 저산소증에 의해 유발된 세포 사멸을 방지하는 효과가 있다. 즉 화학적 저산소증으로 유도된 ROS의 발생을 막고, $H_2O_2$로 유도된 세포사멸을 방지하는데 이것은 화학적 저산소증과 $H_2O_2$의해 유도된 세포사멸에 대해 호도약침액(胡桃藥鍼液)이 방지효과(防止效果)가 있다는 것을 의미한다. 이러한 결과(結果)들은 $H_2O_2$가 지질 과산화와는 무관한 메카니즘으로 저산소증(低酸素症)으로 유발(誘發)된 세포사멸을 중재하고, 따라서 호도약침액(胡桃藥鍼液)은 지질막의 과산화를 방지하기 보다는 ROS를 직접적으로 소거(消去)함으로써 방지 효과가 있다는 것을 의미한다. 더구나 화학적(化學的) 저산소증(低酸素症)은 caspase와 무관한 메카니즘으로 apoptosis를 유발(誘發)한다.

  • PDF

$^{13}C$ NMR Studies of Metabolic Pathways Regulated by HSP104 in Saccharomyces cerevisiae

  • 이경희;강수임;Susan Lindquist
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.3
    • /
    • pp.295-299
    • /
    • 1998
  • HSP104 protein in Saccharomyces cerevisiae is known to provide thermotolerance when induced by various kinds of stresses, such as a mild heat shock, ethanol, and hypoxia. It helps cells survive at an otherwise lethal temperature. Mechanisms by which HSP104 protein works are yet to be elucidated. In order to understand a molecular basis of thermotolerance due to HSP104 protein induced by a mild heat shock, studies on respiratory pathways were carried out in the wild type as well as in the hsp104 deleted mutant. Especially the degree of 13C-acetate incorporation into glutamate-C4 was examined for both strains using 13C-13C homonuclear spin coupling measurements, since glutamate is in a rapid equilibrium with α-ketoglutarate in the TCA cycle. In addition, the temperature effects on the rate of 13C incorporation are compared with or without HSP104 protein expressed. Finally, the inhibitory effect of HSP104 on the respiration pathway was confirmed by the measurements of oxygen consumption rates for both strains.