• Title/Summary/Keyword: Chemical flow control

Search Result 324, Processing Time 0.03 seconds

Analysis of Internal Flow and Control Speed for NH3 (Ammonia) Leakage Scenario of ALD Facility (ALD 설비의 NH3(Ammonia)누출 시나리오에 대한 내부유동 및 제어 속도 해석)

  • Lee, Seoung-Sam;An, Hyeong-hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.5
    • /
    • pp.22-27
    • /
    • 2022
  • Atomic Layer Deposition (ALD) is a facility that deposits an atomic layer on a wafer by causing a chemical reaction after decomposition using heat or plasma by inputting two or more gases during the semiconductor process. The main gas used at this time is NH3 (Ammonia). NH3 has a relatively narrow explosive range with an upper limit (UFL) of 33.6% and a lower limit (LEL) of 15%, but it can explode if a large amount suddenly gathers in one place. It is Velocity and fatal if inhaled or in contact with the skin. NH3 (Ammonia) of ALD (Atomic Layer Deposition) facility is supplied to the chamber through the gas inlet and discharged after the reaction.

Evaluation of Water Quality Characteristics in the Nakdong River using Statistical Analysis (통계분석을 이용한 낙동강유역의 수질변화 특성 조사)

  • Choi, Kil Yong;Im, Toe Hyo;Lee, Jae Woon;Cheon, Se Uk
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.11
    • /
    • pp.1157-1168
    • /
    • 2012
  • In this study, we assess changes in water quality trends over time based on certain control measurements in order to identify and analyze the cause of the trend in water quality. The current water pollution in the Nakdong River was analyzed, as it suggests that the significant changes in water quality have occurred in between 2006 and 2010. Based on monthly average data, we have examined for trends of the Nakdong River watershed in water temperature, Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Nitrogen (TN), and Total Phosphorus (TP). Moreover, we have investigated seasonal variation of water quality of sites within the Nakdong River Basin by implementing further analyses such as, Correlation Coefficient, Regression Analysis, Hierarchical Clustering Method, and Time Series Analysis on SPSS. Geology and topography of the watershed, controlled by various conditions such as, climate, vegetation, topography, soil, and rain medium, have been affected by the non-homogeneity. Our study suggests that such variables could possibly cause eutrophication problems in the river. One possible way to overcome this particular problem is to lay up a ship on the river by increasing the nasal flow measurement of the Nakdong River during rainy season. Moreover, the water management requires arranging the measurement of the flow in order to secure the river while the numerous construction projects need to be continuously observed. However, the water is not flowing tributary of the reason for the timing to be flowing in a natural state of river water and industrial water intake because agriculture. Therefore, ongoing research is needed in addition to configuration of all observations.

Spectroscopical Analysis of SiO2 Optical Film Fabricated by FHD(Flame Hydrolysis Deposition) (FHD(Flame Hydrolysis Deposition)공정으로 제작된 SiO2 광도파막의 분광학적 분석)

  • Kim, Yun-Je;Shin, Dong-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.896-901
    • /
    • 2002
  • Since many process parameters of FHD(Flame Hydrolysis Deposition) are involved in forming multi-component amorphous silica film ($SiO_2-B_2O_3-P_2O_5-GeO_2$), it has not been easy to predict the optical, mechanical and thermal properties of deposited film from the simple process parameters, such as source flow rate. Furthermore, the prediction of final composition of film becomes even more difficult after sintering at high temperature due to the evaporation of volatile dopants. The motivation of the study was to clarify the quantitative relationship between simple process parameters such as the flow rate of source gases and resulting chemical composition of sintered film. Hence, the compositional analysis of silica soot by FTIR(Fourier Transformation Infrared Spectroscopy) and ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry) under the control of the amount of dopant was carried out to obtain the quantitative composition. By measuring spectrum of absorbance from FTIR, the compositional change of B-O, Si-O, OH($H_2O$) in silica film was measured. The concentrations of these dopants were also measured by ICP-AES, which were compared with the FTIR result. The final quantitative relationship between simple process parameters and composition was deduced from the comparison between two results.

Characteristics of Mortar Mixed Nitric Acid Neutralized Red Mud by Cement Type (시멘트 종류별 질산 중화 레드머드 혼입 모르타르의 특성)

  • Kang, Suk-Pyo;Hong, Seong Uk;Kim, Sang-Jin;Hong, Seok-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.6
    • /
    • pp.693-702
    • /
    • 2023
  • This research explores the potential application of Liquid Red Mud(LRM), a byproduct of industrial processes, in the construction sector. We neutralized LRM(pH 10-12) using nitric acid, aiming to understand its viability in construction applications. The study involved substituting LRM(pH 7-8) in mortar formulations, varying by cement type. We assessed the properties of these mixtures by measuring flow, setting time, and compressive strength. Additionally, X-ray Diffraction(XRD) and Scanning Electron Microscopy(SEM) analyses were conducted to examine the chemical properties. Results indicated a reduction in flow value for LRM and LN(neutralized LRM) compared to the control (Plain ) across different cement types. The setting times(initial and final) for LRM and LN were notably shorter than Plain. In compressive strength tests, LRM replaced with slag cement showed enhanced initial strength, though long-term strength gains were marginal across different cement types. SEM analysis revealed distinct voids in Plain and LN, with LRM exhibiting a fibrous microstructure. XRD patterns in SN(slag neutralized) resembled those in OR(original red mud) and ON(original neutralized), with a notable peak at a 2θ value of 22°. The study concludes that unneutralized LRM, when substituted for slag cement in mortar, yields superior initial strength compared to its neutralized counterpart.

Determination of Betaine in Fructus Lycii Using Hydrophilic Interaction Liquid Chromatography with Evaporative Light Scattering Detection

  • Shin, Hyun-Du;Suh, Joon-Hyuk;Kim, Jung-Hyun;Lee, Hye-Yeon;Eom, Han-Young;Kim, Un-Yong;Yang, Dong-Hyug;Han, Sang-Beom;Youm, Jeong-Rok
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.553-558
    • /
    • 2012
  • A simple new method was developed for the determination of betaine in Fructus Lycii using hydrophilic interaction liquid chromatography with evaporative light scattering detection (HILIC-ELSD). Good chromatographic separation and reasonable betaine retention was achieved on a Kinetex HILIC column ($2.1{\times}100mm$, $2.6{\mu}m$) packed with fused-core particle. The mobile phase consisted of (A) acetonitrile and (B) 10 mM ammonium formate (pH 3.0)/acetonitrile (90/10, v/v). It was used with gradient elution at a flow rate of 0.7 mL/min. The column temperature was set at $27.5^{\circ}C$ and the injection volume was $10{\mu}L$. The ELSD drift tube temperature was $50^{\circ}C$ and the nebulizing gas (nitrogen) pressure was 3.0 bar. Stachydrine, a zwitterionic compound, was used as an internal standard. Calibration curve over $10-250{\mu}g/mL$ showed good linearity ($R^2$ > 0.9992) and betaine in the 70% methanol extract of Fructus Lycii was well separated from other peaks. Intraand inter-day precision ranged from 1.1 to 3.0% and from 2.4 to 5.3%, respectively, while intra- and inter-day accuracy ranged from 100.0 to 107.0% and from 94.3 to 103.9%, respectively. The limit of quantification (LOQ) was $10{\mu}g/mL$ and the recoveries were in the range of 98.2-102.7%. The developed HILIC-ELSD method was successfully applied to quantitatively determine the amount of betaine in fourteen Fructus Lycii samples from different locations, demonstrating that this method is simple, rapid, and suitable for the quality control of Fructus Lycii.

A Study on Chemical Compositions of Sediment and Surface Water in Nakdong River for Tracing Contaminants from Mining Activities (광해오염원 추적을 위한 낙동강 지역 퇴적물 및 하천수의 화학조성 연구)

  • Kim, Jiyun;Choi, Uikyu;Baek, Seung-Han;Choi, Hye-Bin;Lee, Jeonghoon
    • Journal of the Korean earth science society
    • /
    • v.37 no.4
    • /
    • pp.211-217
    • /
    • 2016
  • There have been found mine tailings, wastes, and mining drainage scattered in the area of Nakdong River due to the improper maintenance of the abandoned mines. These contaminants can flow into rivers during the heavy rain periods in summer. Along the study area beginning Seokpo-myeon, Bonghwa-gun of Gyeongsangbuk-do untill Dosan-myeon, Andong-si, there are one hundred five mines including sixty metalliferous mines and forty-five nonmetal mines, which can adversely affect the adjacent rivers. To verify the contamination, we collected sediments, seepage water and surface water for a year both in rainy season and dry season. This study found that sediments, containing high concentrations of heavy metals caused by mining activities, are dispersed throughout the entire river basin (68 sample points with pollution index, based on the concentration of trace element, (PI) >10 among the total of 101 samples). The results of river water analysis indicated the increased concentrations of arsenic and cadmium at branches from Seungbu, Sambo, Okbang and Janggun mine, which concerns that the river water may be contaminated by mining drainage and tailing sediments. However, it is difficult to sort out the exact sources of contamination in sediments and waters only by using the chemical compositions. Thus the control of mining pollution is challenging. To prevent water from being contaminated by mining activities, we should be able to divide inflow rates from each origin of the mines. Therefore, there should be a continued study about how to trace the source of contaminants from mining activities by analyzing stable isotopes.

An Experimental Study on the Restoration Creation of Tidal Flats (간석지 생태계 복원에 관한 실험적 연구)

  • Lee, Jeoung-gyu;Lee, Nam-hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.1
    • /
    • pp.77-82
    • /
    • 2000
  • Seven constructed and three natural tidal flats were compared to evaluate state-of- the-art of creation and restoration technology for tidal flats. parameters studied were physico-chemical and biological characteristics of soils and rate of respiration. The natural tidal flats had higher contents of silts, nitrogen and organic matter compared to the constructed ones. The natural ones had reductive Bone below 2 cm whereas the constructed ones had oxidative zone from the surface to below 20 cm. The bacterial population in the soil of the constructed tidal flats was one to two magnitudes lower than that in the natural ones. Biomass of macrobenthos and microbial respiration rate, however, were not different significantly between the natural and the constructed tidal flats. The purification capacity by diatom+bacterial+meiobenthos and macrobenthos in the constructed tidal flats was higher than that in the natural ones due to deeper permeable layer for purification in the constructed tidal flats. There was an exceptional constructed tidal flat with similar physico-chemical and biological characteristics to natural ones. Shearing stress to the surface of the tidal flat by the flow of seawater was as low as that of natural ones. These hydraulic conditions seemed to be a controlling factor on structures and functions of tidal flats. The control of hydraulic condition seemed to be one of the most important factors to create natural-like tidal flats.

  • PDF

Study on the Desulfurization Characteristic of Limestone Depending on the Operating Parameters of In-Furnace Desulfurization for Oxy-Fuel Combustion Using Drop Tube Furnace (순산소연소 조건에서 Drop tube furnace를 이용한 운전변수에 따른 석회석의 탈황특성 연구)

  • Choi, Wook;Jo, Hang-Dae;Choi, Won-Kil;Park, Yeong-Sung;Keel, Sang-In;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.857-864
    • /
    • 2011
  • Oxy-fuel combustion with many advantages such as high combustion efficiency, low flue gas flow rate and low NOx emission has emerged as a promising CCS technology for coal combustion facilities. In this study, the effects of the direct sulfation reaction on $SO_2$ removal efficiency were evaluated in a drop tube furnace under typical oxy-fuel combustion conditions represented by high concentrations of $CO_2$ and $SO_2$ formed by gas recirculation to control furnace combustion temperature. The effects of the operating parameters including the reaction temperature, $CO_2$ concentration, $SO_2$ concentration, Ca/S ratio and humidity on $SO_2$ removal efficiency were investigated experimentally. $SO_2$ removal efficiency increased with reaction temperature up to 1,200 due to promoted calcination of limestone reagent particles. And $SO_2$ removal efficiency increased with $SO_2$ concentrations and the humidity of the bulk gas. The increase of $SO_2$ removal efficiency with $CO_2$ concentrations showed that $SO_2$ removal by limestone was mainly done by the direct sulfation reaction under oxy-fuel combustion conditions. From the impact assessment of operation parameters, it was shown that these parameters have an effects on the desulfurization reaction by the order of the Ca/S ratio > residence time > $O_2$ concentration > reaction temperature > $SO_2$ concentration > $CO_2$ concentration > water vapor. The semi-empirical model equation for to evaluate the effect of the operating parameters on the performance of in-furnace desulfurization for oxy-fuel combustion was established.

Simultaneous Analysis of Cold Medicine Component by High-Performance Liquid Chromatography(HPLC) (고성능 액체크로마토그래피(HPLC)를 이용한 Cold Medicine 성분의 동시 분석)

  • Wonju Lee;Seung-Tae Choi;Keun-Sik Shin;Jin-Young Park;Jae-Ho Sim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.867-873
    • /
    • 2023
  • In this study, for the purpose of standardized quality control of a cold medicine, we simultaneous analyzed four main chemical components of a cold medicine: acetaminophen, caffeine, methyl paraben, and propyl paraben. The sample was subjected to quantitative analysis using high performance liquid chromatography (HPLC), after pretreatment of four components. The experiment was carried out by using Isocratic elution at wavelength of 270nm. Acetonitrile and water (H2O) were used as a mobile phase at a flow rate of 1.0mL/min in a commercial C18 reversed-phase column. A volume of 10uL cold medicine were injected into the column with column oven temperature at 35℃. As a result of the experiment, the values of Resolution were 4.983, 1.596, 5.519, and 1.678 respectively-well over Rs >1.5, which indicates that the separation of four components were efficient. In addition, value of symmetry factor of the components was 1.056, 1.069, 1.032, and 1.133 respectively, to show its symmetrical stability. The calibration curve of all four components exhibits good linearity with R2 >0.9995 to 0.9999. Furthermore, the limit of detection(LOD) were between 0.0118 to 1.5973 mg/mL, while the limit of quantification (LOQ) were between 0.0353 to 4.7919 ㎍/mL with the recovery rate of 79.6% ~ 120.5%. The results of this study showed an efficient quality evaluation of a simultaneous analysis method for cold medicine components.

Control of electrical types in the P-doped ZnO thin film by Ar/$O_2$ gas flow ratio

  • Kim, Young-Yi;Han, Won-Suk;Kong, Bo-Hyun;Cho, Hyung-Koun;Kim, Jun-Ho;Lee, Ho-Seoung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.11-11
    • /
    • 2008
  • ZnO has a very large exciton binding energy (60 meV) as well as thermal and chemical stability, which are expected to allow efficient excitonic emission, even at room temperature. ZnO based electronic devices have attracted increasing interest as the backplanes for applications in the next-generation displays, such as active-matrix liquid crystal displays (AMLCDs) and active-matrix organic light emitting diodes (AMOLEDs), and in solid state lighting systems as a substitution for GaN based light emitting diodes (LEDs). Most of these electronic devices employ the electrical behavior of n-type semiconducting active oxides due to the difficulty in obtaining a p-type film with long-term stability and high performance. p-type ZnO films can be produced by substituting group V elements (N, P, and As) for the O sites or group I elements (Li, Na, and K) for Zn sites. However, the achievement of p-type ZnO is a difficult task due to self-compensation induced from intrinsic donor defects, such as O vacancies (Vo) and Zn interstitials ($Zn_i$), or an unintentional extrinsic donor such as H. Phosphorus (P) doped ZnO thin films were grown on c-sapphire substrates by radio frequency magnetron sputtering with various Ar/ $O_2$ gas ratios. Control of the electrical types in the P-doped ZnO films was achieved by varying the gas ratio with out post-annealing. The P-doped ZnO films grown at a Ar/ $O_2$ ratio of 3/1 showed p-type conductivity with a hole concentration and hole mobility of $10^{-17}cm^{-3}$ and $2.5cm^2/V{\cdot}s$, respectively. X-ray diffraction showed that the ZnO (0002) peak shifted to lower angle due to the positioning of $p^{3-}$ ions with a smaller ionic radius in the $O^{2-}$ sites. This indicates that a p-type mechanism was due to the substitutional Po. The low-temperature photoluminescence of the p-type ZnO films showed p-type related neutral acceptor-bound exciton emission. The p-ZnO/n-Si heterojunction LEO showed typical rectification behavior, which confirmed the p-type characteristics of the ZnO films in the as-deposited status, despite the deep-level related electroluminescence emission.

  • PDF