• Title/Summary/Keyword: Chemical disaster

Search Result 311, Processing Time 0.028 seconds

Study on the Consequence Effect Analysis & Process Hazard Review at Gas Release from Hydrogen Fluoride Storage Tank (최근 불산 저장탱크에서의 가스 누출시 공정위험 및 결과영향 분석)

  • Ko, JaeSun
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.449-461
    • /
    • 2013
  • As the hydrofluoric acid leak in Gumi-si, Gyeongsangbuk-do or hydrochloric acid leak in Ulsan, Gyeongsangnam-do demonstrated, chemical related accidents are mostly caused by large amounts of volatile toxic substances leaking due to the damages of storage tank or pipe lines of transporter. Safety assessment is the most important concern because such toxic material accidents cause human and material damages to the environment and atmosphere of the surrounding area. Therefore, in this study, a hydrofluoric acid leaked from a storage tank was selected as the study example to simulate the leaked substance diffusing into the atmosphere and result analysis was performed through the numerical Analysis and diffusion simulation of ALOHA(Areal Location of Hazardous Atmospheres). the results of a qualitative evaluation of HAZOP (Hazard Operability)was looked at to find that the flange leak, operation delay due to leakage of the valve and the hose, and toxic gas leak were danger factors. Possibility of fire from temperature, pressure and corrosion, nitrogen supply overpressure and toxic leak from internal corrosion of tank or pipe joints were also found to be high. ALOHA resulting effects were a little different depending on the input data of Dense Gas Model, however, the wind direction and speed, rather than atmospheric stability, played bigger role. Higher wind speed affected the diffusion of contaminant. In term of the diffusion concentration, both liquid and gas leaks resulted in almost the same $LC_{50}$ and ALOHA AEGL-3(Acute Exposure Guidline Level) values. Each scenarios showed almost identical results in ALOHA model. Therefore, a buffer distance of toxic gas can be determined by comparing the numerical analysis and the diffusion concentration to the IDLH(Immediately Dangerous to Life and Health). Such study will help perform the risk assessment of toxic leak more efficiently and be utilized in establishing community emergency response system properly.

Characteristics of Biological Agent and relavent case study (생물무기 특성과 사례연구)

  • Park, Minwoo;Kim, Hwami;Choi, Yeonhwa;Kim, Jusim
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.4
    • /
    • pp.442-454
    • /
    • 2017
  • Biological weapon is manipulated and produced from microorganisms such as bacteria, virus, rickettsia, fungi etc. It is classified as one of the Weapons of Mass Destruction (WMD) along with chemical weapon and radiological weapon. Biological weapon has a number of operational advantages over the other WMDs including ease of development and production, low cost and possibility of covert dissemination. In this study we analyze the history of biological weapon's development and the existing biological threats. Then, we predict the social impact of biological attack based on the physical properties of biological agent and infection mechanisms. By analyzing the recognition, dispersion pattern of agents, characteristics of the diseases in the biological weapon related historical events such as Sverdlovsk anthrax accident, 2001 anthrax attack, we found out some of the facts that biological attack would not likely to be recognized rapidly, produce large number of the exposed, increase number of paients who suffed from severe respiratory illness. It would lead the public health and medical service providers to be struggled with hugh burden. Base on the facts that we found from this case study, we suggested the main capabilities of public health required to respond to bioterrorism event efficiently. Syndromic surveillance and other reporting system need to be operated effeciently so that any suspicious event should be detected promptly. the pathogen which suspected to be used should be identified through laboratory diagnostic system. It is critical for the public health agency to define potentially exposed population under close cooperation with law enforcement agencies. Lastly, massive prophylaxis should be provided rapidly to the people at need by operating human and material resources effeciently. If those capacities of public health are consistantly fortified we would be able to deal with threat of bioterrorism successfully.

A Study on the Flammability and Combustion Risk of Biodiesel Mixture (바이오디젤 혼합물의 인화 및 연소 위험성에 관한 연구)

  • Kim, Ju Suk;Ko, Jae Sun
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.1
    • /
    • pp.10-24
    • /
    • 2021
  • Purpose: The purpose of this study is to determine the dangers of biodiesel and general diesel mixtures currently used as alternative fuels by equipment (tag method and penski Marten method) and to determine the difference between flash point and combustion point (closed, open) according to test methods. It is intended to be used as a reference material for identification and evaluation of firecausing substances by confirming the risk of mixtures by comparative analysis and measurement, and establishing a risk assessment method for chemical substances. Method: Flash point test method and result treatment were tested based on ASTM and KS M mode, which are tag sealing and pen schematense test methods used as flash point and combustion point test methods for crude oil and petroleum products. The manufacturer of the equipment used in this experiment was a test equipment that satisfies the test standards of KS M 2010 with equipment produced by TANAKA of Japan. The flash point and combustion point were measured, and the flash point according to the test method of biodiesel and general diesel mixture ( Closed, open), and the ignition point of a mixture of biodiesel and general diesel was compared and analyzed for ignition risk compared with conventional diesel. Results: Looking at the experimental results, first, as an analysis of the risk of flammability of the mixture, the flash point of a substance containing 70% biodiesel was found to be about 92℃ based on general diesel with a flash point of 64.5℃, and gasoline and biodiesel or When the biodiesel mixture was synthesized, it was confirmed that the flash point tends to decrease. In addition, the difference between the flash point and the combustion point was analyzed as about 20 ~ 30℃, and when a small amount of gasoline or methanol was mixed, the flash point was lowered, but it was confirmed that the combustion point was similar to that of the existing mixture. Conclusion: In this study, in order to secure the effectiveness of the details of the criteria for judging dangerous materials in the existing Dangerous Materials Safety Management Act, and to secure the reliability and reproducibility of the judgment of dangerous materials, we confirm the criteria for judging the risk of the mixture through an experimental study on flammable mixtures. It will be able to provide reference data for experimental criteria for flammable liquids that are regulated in the field. In addition, if this study accumulates know-how on experiment by test method, it is expected that it can be used as a basis for research on risk assessment and research on dangerous goods.

A Study on the Suitability Analysis of Tunnel Access Control for Hazardous Materials Transport Vehicles on the Expressway (위험물질 수송차량의 고속도로 터널통행규제 분석 연구)

  • Hong, Jung Yeol;Choi, Yoon Hyuk;Park, Dong Joo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.3
    • /
    • pp.18-31
    • /
    • 2018
  • Since accidents of hazardous material transport vehicle on roadways cause severe damage in the form of disaster, foreign countries have long been engaged in systematic management and establishment of relevant laws and policies for the road safety. Recently, over 10-kilometer long tunnel, such as Inje-Yangyang Tunnel and Geumjeongsan Tunnel, has been opened on the expressway and the production of various hazardous materials is increasing with the development of chemical technology. However, road laws related to the safe operation of hazardous materials transport vehicles are still lacking, and policy measures for managing them have not been specified. It is an important task to recognize the risk of accidents of hazardous material transport vehicles and to secure road safety by establishing a management plan for road managers. Therefore, this study analyzed the feasibility of the traffic regulation of expressway tunnel in South Korea and suggested a direction for management. The results of this study can be utilized as the primary data for the revision of law related to hazardous materials transport vehicles on roadways and the derivation of optimal route of hazardous materials transport vehicles.

A Study on the Environmental Application of Image Radar for Expanding the Use of Next Generation Medium Satellite 5 (차세대중형위성 5호 활용 확대를 위한 영상레이더의 환경분야 활용 방안 연구)

  • Han, Hyeon-gyeong;Lee, Moungjin
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1251-1260
    • /
    • 2019
  • Existing environmental spatial information, which has been concentrated on spatial resolution, has limitations in solving realistic environmental problems that must be accompanied by physical and chemical characterization. Accordingly, there is a need for an image radar capable of identifying physical characteristics of an object regardless of weather conditions, day and night, and sunlight. Image radar is used in various fields in the United States and Europe. The next generation of medium-sized satellite No. 5 in Korea, which is under development with the aim of monitoring water disasters, is also looking for ways to expand the scope to various applications based on the existing application range. To this end, we analyzed domestic and international papers (100 works) using image radar, and reviewed KEI 2016 report, domestic papers, and foreign papers. Based on this, various environmental issues were summarized and the effects of when the image radar was used were analyzed and land cover was selected as an environmental issue. In the future, we will embody the technology to improve the accuracy of the land cover map, which is the environmental issue selected in this study, and build the foundation system for the stable use of the land cover map.

Effects of Calcium Chloride and Eco-Friendly Deicer on the Plant Growth (염화칼슘과 친환경 제설제가 식물의 생장에 미치는 영향)

  • Shin, Seung-Sook;Park, Sang-Deog;Kim, Ho-Seop;Lee, Kyu-Song
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.5
    • /
    • pp.487-498
    • /
    • 2010
  • This article presents an effect of deicer such as $CaCl_2$(calcium chloride) and EFD(Eco-Friendly Deicer) composed by organic acids on the survival and growth of plant. Pine and bush clover which are main natural species on the road side, and young radish and kidney bean which are cultivation species used in this test that responses of survival and growth were analyzed as grade concentration of deicers. Bush clover showed the most sensitive survival response among 4 species to the deicer. Pine growth didn't have statistical significance as the kind of deicers and concentration variation, but growths of bush clover and kidney bean showed growth inhibition in concentration more than 3% of $CaCl_2$ and EFD1. The results of survival and growth for $CaCl_2$(calcium chloride) demonstrated that young radish and pine are tolerant species and bush clover and kidney bean are sensitive species. Although EFD1 manufactured by chemical showed the negative effect on the survival and growth of plants, EFD2 made with waste compost was confirmed that it has the positive influence to the survival and growth of the both sensitive and tolerant plant species for chloride.

Assessment of the Struvite Crystallization Process for Phosphate Removal and Recovery from a Sludge Treatment System of a Domestic Wastewater Treatment Plant (하수처리장 슬러지처리 계통에서의 인 제거 및 회수를 위한 Struvite 결정화 공정 적용성 평가)

  • Baek, Seung Ryong;Lee, Byung Joon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.8
    • /
    • pp.462-469
    • /
    • 2017
  • Eutrophication and shortage of phosphate ore raise the necessity of phosphate removal and recovery from wastewater treatment plants. Especially, a sludge treatment system containing highly concentrated phosphate should be targeted for phosphate removal and recovery. This study thus aimed to evaluate the capability of the struvite crystallization process for phosphate removal and recovery from a sludge treatment system of a wastewater treatment plant. Analysis on phosphate concentrations and masses in the sludge treatment system revealed that digested sludge and centrate have phosphate concentrations and masses, high enough to adopt the struvite crystallization process. Chemical equilibrium modeling indicated that the struvite crystallization reaction substantially occurred with pH higher than 8 and $Mg^{2+}$ concentration 1.2 times higher than its theoretical requirement. A series of batch tests with digested sludge and centrate indicated that the phosphate removal reaction by struvite crystallization followed a first-order kinetics and reached over 80% removal efficiency at equilibrium. Aeration in the batch tests was found to purge $CO_2$ in sludge or centrate and increase pH up to 8.7, without adding NaOH. Thus, we concluded that the struvite crystallization process could be an efficient and economical process for phosphate removal and recovery from a wastewater treatment plant.

Impact Analyses for the Safety Checks of Used Wave Dissipation Concrete Block Considering Construction Phases (사용된 소파블록의 안전성 검토를 위한 시공단계별 충돌해석)

  • Huh, Taik-Nyung;Choi, Chang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.640-647
    • /
    • 2018
  • Many harbor structures have been constructed, and some structures are now under construction in Korea, which is a peninsular state and a logistics hub in Northeast Asia. Expansions and extensions of existing harbors are also being planned to meet increasing natural disaster threats. Wave-dissipation concrete blocks are recycled or discarded based on the personal experience of engineers only, and there are no safety checks or criteria. To check the safety of used blocks, material evaluations were done by visual inspection of blocks on the ground and under water and from 20 non-destructive measurements of the rebound hardness test and 3 concrete core samples. Wave-dissipation blocks are sometimes fully or partially damaged in the process of transferring and mounting them or during construction. Therefore, a safety check is essential for recycling blocks with an evaluation of materials while considering the construction phases. To do this, a block was modeled with a 3D finite element method using ADINA, and impact analyses were done according to the transfer, mounting, and construction phases. From the results of the impact analyses and material evaluation, the safety checks and reasonable evaluation of used blocks were examined, and detailed construction methods are proposed. The methods are expected to maximize the reuse of used wave-dissipation blocks from an economical point of view.

Effect of Fluorination and Ultrasonic Washing Treatment on Surface Characteristic of Poly(ethylene terephthalate) (불소화 및 초음파 수세가 폴리(에틸렌 테레프탈레이트) 필름의 표면 특성에 미치는 영향)

  • Kim, Do Young;In, Se Jin;Lee, Young-Seak
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.316-322
    • /
    • 2013
  • In this study, poly(ethylene terephthalate) (PET) was treated with fluorination and ultrasonic washing treatment for hydrophilic modification of PET film. We measured the change of surface modified PET film surface characteristics using contact angle, surface free energy, FE-SEM, AFM and XPS. After direct fluorination and ultrasonic washing treatment, the water contact angle was measured to be $10.81^{\circ}$, 85% reduction compared to the untreated PET film. Total surface free energy has been measured to be $42.25mNm^{-1}$, 650% increase compared to the untreated PET film. Also RMS roughness has been measured to be 1.965 nm, 348% increase compared to the untreated PET film. Hydrophilic functional group C-OH bond concentration has increased approximately 3 times. These results are attributed to the hydrophilic functional group and cavitation due to chemical etching. From this result, it was suggested that the fluorination-ultrasonic washing treatment method could be useful to make PET film surface hydrophilic.

Effects of Fume silica on synthesis of New Austria Tunnel Method Resin for new material in space aviation (우주항공의 신소재를 위한 New Austria Tunnel Method 수지합성에 대한 Fume silica의 영향)

  • Kim, Kijun;Lee, Jooho;Park, Taesul;Lee, Joo-Youb
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.595-601
    • /
    • 2014
  • The microstructures of NATM were examined by SEM, FT-IR spectra, tensile properties, mole % of [NCO/OH], and particle size analyzer. Growing concerns in the environment-friendly industries have led to the development of solvent-free formulations that can be cured. We had synthesized NATM(New Austria Tunnel Method) resin having the ability to protect stainless steel against corrosion. Comparing with general NATM resin and coatings, this resin that synthesized with polyurethane and epoxy was highly stronger in intensity and longer durability. Hybrid resin was composed of polyols, MDI, epoxy, silicone surfactant, catalyst and crosslink agent, and fillers. Moreover, fillers such as fume silica not only accelerated the curing rate but also improved the physical property as thermal barriers. The rigid segments of synthetic resin in mechanical properties were due to fume silica and the increase the mole% of [NCO/OH] for corrosion protection. In conclusion, the hybrid resin microstructure with crosslink agent and fume silica are good material for thermosetting coating of metal substrates such as stainless steel.